enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Phase margin - Wikipedia

    en.wikipedia.org/wiki/Phase_margin

    Phase margin and gain margin are two measures of stability for a feedback control system. They indicate how much the gain or the phase of the system can vary before it becomes unstable. Phase margin is the difference (expressed as a positive number) between 180° and the phase shift where the magnitude of the loop transfer function is 0 dB.

  3. Bode plot - Wikipedia

    en.wikipedia.org/wiki/Bode_plot

    Figures 8 and 9 illustrate the gain margin and phase margin for a different amount of feedback β. The feedback factor is chosen smaller than in Figure 6 or 7, moving the condition | β A OL | = 1 to lower frequency. In this example, 1 / β = 77 dB, and at low frequencies A FB ≈ 77 dB as well. Figure 8 shows the gain plot.

  4. Loop gain - Wikipedia

    en.wikipedia.org/wiki/Loop_gain

    Phase margin and gain margin; Nyquist plot; In telecommunications, the term "loop gain" can refer to the total usable power gain of a carrier terminal or two-wire repeater. The maximum usable gain is determined by, and may not exceed, the losses in the closed path. Summary of negative feedback amplifier terms

  5. Classical control theory - Wikipedia

    en.wikipedia.org/wiki/Classical_control_theory

    Tools include the root locus, the Nyquist stability criterion, the Bode plot, the gain margin and phase margin. More advanced tools include Bode integrals to assess performance limitations and trade-offs, and describing functions to analyze nonlinearities in the frequency domain.

  6. Feedback - Wikipedia

    en.wikipedia.org/wiki/Feedback

    An easier method, but less general, is to use Bode plots developed by Hendrik Bode to determine the gain margin and phase margin. Design to ensure stability often involves frequency compensation to control the location of the poles of the amplifier. Electronic feedback loops are used to control the output of electronic devices, such as ...

  7. Nyquist stability criterion - Wikipedia

    en.wikipedia.org/wiki/Nyquist_stability_criterion

    The Nyquist plot for () = + + with s = jω.. In control theory and stability theory, the Nyquist stability criterion or Strecker–Nyquist stability criterion, independently discovered by the German electrical engineer Felix Strecker [] at Siemens in 1930 [1] [2] [3] and the Swedish-American electrical engineer Harry Nyquist at Bell Telephone Laboratories in 1932, [4] is a graphical technique ...

  8. Pomeranian’s Anticipation of Getting to Grandpa’s House Is ...

    www.aol.com/lifestyle/pomeranian-anticipation...

    Related: Chow Chow's Excitement Over Seeing Grandma Is Downright Heartwarming. All About Pomeranians. Pomeranians, or Poms as they're lovingly referred to, are known for their happy and friendly ...

  9. Linear–quadratic regulator - Wikipedia

    en.wikipedia.org/wiki/Linear–quadratic_regulator

    LQR controllers possess inherent robustness with guaranteed gain and phase margin, [1] and they also are part of the solution to the LQG (linear–quadratic–Gaussian) problem. Like the LQR problem itself, the LQG problem is one of the most fundamental problems in control theory. [2]