Search results
Results from the WOW.Com Content Network
In mathematical analysis, the maximum and minimum [a] of a function are, respectively, the greatest and least value taken by the function. Known generically as extremum , [ b ] they may be defined either within a given range (the local or relative extrema) or on the entire domain (the global or absolute extrema) of a function.
In mathematics, the arguments of the maxima (abbreviated arg max or argmax) and arguments of the minima (abbreviated arg min or argmin) are the input points at which a function output value is maximized and minimized, respectively. [note 1] While the arguments are defined over the domain of a function, the output is part of its codomain.
Excel's storage of numbers in binary format also affects its accuracy. [3] To illustrate, the lower figure tabulates the simple addition 1 + x − 1 for several values of x. All the values of x begin at the 15 th decimal, so Excel must take them into account. Before calculating the sum 1 + x, Excel first approximates x as a binary number
Although spreadsheets like Excel, Open Office Calc, or Google Sheets don't provide a clamping function directly, the same effect can be achieved by using functions like MAX & MIN together, by MEDIAN, [8] [9] or with cell function macros. [10] When attempting to do a clamp where the input is an array, other methods must be used. [11]
The name "softmax" may be misleading. Softmax is not a smooth maximum (that is, a smooth approximation to the maximum function). The term "softmax" is also used for the closely related LogSumExp function, which is a smooth maximum. For this reason, some prefer the more accurate term "softargmax", though the term "softmax" is conventional in ...
Full width at half maximum. In a distribution, full width at half maximum (FWHM) is the difference between the two values of the independent variable at which the dependent variable is equal to half of its maximum value. In other words, it is the width of a spectrum curve measured between those points on the y-axis which are half the maximum ...
More generally, one can define a decomposable aggregation function f as one that can be expressed as the composition of a final function g and a self-decomposable aggregation function h, =, = (()). For example, AVERAGE = SUM / COUNT and RANGE = MAX − MIN .
For functions on the real line, one way to define the limit of a function is in terms of the limit of sequences. (This definition is usually attributed to Eduard Heine .) In this setting: lim x → a f ( x ) = L {\displaystyle \lim _{x\to a}f(x)=L} if, and only if, for all sequences x n (with x n not equal to a for all n ) converging to a the ...