enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotational frequency - Wikipedia

    en.wikipedia.org/wiki/Rotational_frequency

    Rotational frequency, also known as rotational speed or rate of rotation (symbols ν, lowercase Greek nu, and also n), is the frequency of rotation of an object around an axis. Its SI unit is the reciprocal seconds (s −1 ); other common units of measurement include the hertz (Hz), cycles per second (cps), and revolutions per minute (rpm).

  3. Torque - Wikipedia

    en.wikipedia.org/wiki/Torque

    For a rotating object, the linear distance covered at the circumference of rotation is the product of the radius with the angle covered. That is: linear distance = radius × angular distance. And by definition, linear distance = linear speed × time = radius × angular speed × time. By the definition of torque: torque = radius × force.

  4. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    Here, the function gives the mass density at each point (,,), is a vector perpendicular to the axis of rotation and extending from a point on the rotation axis to a point (,,) in the solid, and the integration is evaluated over the volume of the body . The moment of inertia of a flat surface is similar with the mass density being replaced by ...

  5. Angular velocity - Wikipedia

    en.wikipedia.org/wiki/Angular_velocity

    In physics, angular velocity (symbol ω or , the lowercase Greek letter omega), also known as the angular frequency vector, [1] is a pseudovector representation of how the angular position or orientation of an object changes with time, i.e. how quickly an object rotates (spins or revolves) around an axis of rotation and how fast the axis itself changes direction.

  6. Rotation around a fixed axis - Wikipedia

    en.wikipedia.org/wiki/Rotation_around_a_fixed_axis

    It also depends on the distribution of the mass: distributing the mass further from the center of rotation increases the moment of inertia by a greater degree. For a single particle of mass m {\displaystyle m} a distance r {\displaystyle r} from the axis of rotation, the moment of inertia is given by I = m r 2 . {\displaystyle I=mr^{2}.}

  7. Angular frequency - Wikipedia

    en.wikipedia.org/wiki/Angular_frequency

    A sphere rotating around an axis. Points farther from the axis move faster, satisfying ω = v / r.. In physics, angular frequency (symbol ω), also called angular speed and angular rate, is a scalar measure of the angle rate (the angle per unit time) or the temporal rate of change of the phase argument of a sinusoidal waveform or sine function (for example, in oscillations and waves).

  8. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. They are named in honour of Leonhard Euler.

  9. Tangential speed - Wikipedia

    en.wikipedia.org/wiki/Tangential_speed

    Tangential speed and rotational speed are related: the faster an object rotates around an axis, the larger the speed. Tangential speed is directly proportional to rotational speed at any fixed distance from the axis of rotation. [1] However, tangential speed, unlike rotational speed, depends on radial distance (the distance from the axis).