Ad
related to: antiderivative calculator with a point estimate
Search results
Results from the WOW.Com Content Network
The integrand is evaluated at a finite set of points called integration points and a weighted sum of these values is used to approximate the integral. The integration points and weights depend on the specific method used and the accuracy required from the approximation.
An illustration of Monte Carlo integration. In this example, the domain D is the inner circle and the domain E is the square. Because the square's area (4) can be easily calculated, the area of the circle (π*1.0 2) can be estimated by the ratio (0.8) of the points inside the circle (40) to the total number of points (50), yielding an approximation for the circle's area of 4*0.8 = 3.2 ≈ π.
See antiderivative and nonelementary integral for more details. A procedure called the Risch algorithm exists that is capable of determining whether the integral of an elementary function (function built from a finite number of exponentials , logarithms , constants , and n th roots through composition and combinations using the four elementary ...
Gauss–Kronrod formulas are extensions of the Gauss quadrature formulas generated by adding + points to an -point rule in such a way that the resulting rule is exact for polynomials of degree less than or equal to + (Laurie (1997, p. 1133); the corresponding Gauss rule is of order ).
Risch called it a decision procedure, because it is a method for deciding whether a function has an elementary function as an indefinite integral, and if it does, for determining that indefinite integral. However, the algorithm does not always succeed in identifying whether or not the antiderivative of a given function in fact can be expressed ...
In complex analysis, a branch of mathematics, the antiderivative, or primitive, of a complex-valued function g is a function whose complex derivative is g.More precisely, given an open set in the complex plane and a function :, the antiderivative of is a function : that satisfies =.
In mathematics, the method of steepest descent or saddle-point method is an extension of Laplace's method for approximating an integral, where one deforms a contour integral in the complex plane to pass near a stationary point (saddle point), in roughly the direction of steepest descent or stationary phase. The saddle-point approximation is ...
GeoGebra can store variables for numbers, vectors and points, calculate derivatives and integrals of functions, and has a full complement of commands like Root or Extremum. Teachers and students can use GeoGebra as an aid in formulating and proving geometric conjectures. GeoGebra's main features are: Interactive geometry environment (2D and 3D)
Ad
related to: antiderivative calculator with a point estimate