Search results
Results from the WOW.Com Content Network
If all circuit components were linear or the circuit was linearized beforehand, the equation system at this point is a system of linear equations and is solved with numerical linear algebra methods. Otherwise, it is a nonlinear algebraic equation system and is solved with nonlinear numerical methods such as Root-finding algorithms .
This resolution of a signal into two components allows the technique of superposition to be used to simplify further analysis. (If superposition applies in the context.) In analysis of the small signal's contribution to the circuit, the nonlinear components, which would be the DC components, are analyzed separately taking into account nonlinearity.
The tuning application, for instance, is an example of band-pass filtering. The RLC filter is described as a second-order circuit, meaning that any voltage or current in the circuit can be described by a second-order differential equation in circuit analysis. The three circuit elements, R, L and C, can be combined in a number of different ...
Figure 1: Essential meshes of the planar circuit labeled 1, 2, and 3. R 1, R 2, R 3, 1/sC, and sL represent the impedance of the resistors, capacitor, and inductor values in the s-domain. V s and I s are the values of the voltage source and current source, respectively. Mesh analysis (or the mesh current method) is a circuit analysis method for ...
The RLC filter is described as a second-order circuit, meaning that any voltage or current in the circuit can be described by a second-order differential equation in circuit analysis. The three circuit elements can be combined in a number of different topologies. All three elements in series or all three elements in parallel are the simplest in ...
Therefore, the linearly amplified signal will exhibit a slope of 1. A third-order nonlinear product will increase by 3 dB in power when the input power is raised by 1 dB. Both curves are extended with straight lines of slope 1 and n (3 for a third-order intercept point). The point where the curves intersect is the intercept point.
Thévenin's theorem and its dual, Norton's theorem, are widely used to make circuit analysis simpler and to study a circuit's initial-condition and steady-state response. [ 8 ] [ 9 ] Thévenin's theorem can be used to convert any circuit's sources and impedances to a Thévenin equivalent ; use of the theorem may in some cases be more convenient ...
Kirchhoff's current law is the basis of nodal analysis. In electric circuits analysis, nodal analysis, node-voltage analysis, or the branch current method is a method of determining the voltage (potential difference) between "nodes" (points where elements or branches connect) in an electrical circuit in terms of the branch currents.