Search results
Results from the WOW.Com Content Network
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength .
The rate or spring constant of a spring is the change in the force it exerts, divided by the change in deflection of the spring. That is, it is the gradient of the force versus deflection curve. An extension or compression spring's rate is expressed in units of force divided by distance, for example or N/m or lbf/in.
is a constant with units of newton-meters / radian, variously called the spring's torsion coefficient, torsion elastic modulus, rate, or just spring constant, equal to the change in torque required to twist the spring through an angle of 1 radian.
Springs, which represent the elastic component of a viscoelastic material, obey Hooke's law: = where σ is the applied stress, E is the Young's modulus of the material, and ε is the strain. The spring represents the elastic component of the model's response. [2]
A prototypical elastic component is a coiled spring. The linear elastic performance of a spring is parametrized by a constant of proportionality, called the spring constant. This constant is usually denoted as k (see also Hooke's Law ) and depends on the geometry, cross-sectional area, undeformed length and nature of the material from which the ...
Young's modulus is defined as the ratio of the stress (force per unit area) applied to the object and the resulting axial strain (displacement or deformation) in the linear elastic region of the material. Although Young's modulus is named after the 19th-century British scientist Thomas Young, the concept was developed in 1727 by Leonhard Euler.
Young's modulus: E: Ratio of stress to strain pascal (Pa = N/m 2) L −1 M T −2: scalar; assumes isotropic linear material spring constant: k: k is the torsional constant (measured in N·m/radian), which characterizes the stiffness of the torsional spring or the resistance to angular displacement. N/m M T −2: scalar