Search results
Results from the WOW.Com Content Network
A lunar distance, 384,399 km (238,854 mi), is the Moon's average distance to Earth. The actual distance varies over the course of its orbit. The image compares the Moon's apparent size when it is nearest and farthest from Earth.
The Sun's gravitational effect on the Moon is more than twice that of Earth's on the Moon; consequently, the Moon's trajectory is always convex [25] [26] (as seen when looking Sunward at the entire Sun–Earth–Moon system from a great distance outside Earth–Moon solar orbit), and is nowhere concave (from the same perspective) or looped.
The lunar distance is the angle between the Moon and a star (or the Sun). In the above illustration the star Regulus is used. The altitudes of the two bodies are used to make corrections and determine the time. In celestial navigation, lunar distance, also called a lunar, is the angular distance between the Moon and another celestial body.
The distance between the Moon and Earth varies from around 356,400 km (221,500 mi) to 406,700 km (252,700 mi) (apogee), making the Moon's distance and apparent size fluctuate up to 14%. [201] [202] On average the Moon's angular diameter is about 0.52°, roughly the same apparent size as the Sun (see § Eclipses).
Aristarchus's 3rd century BCE calculations on the relative sizes of, from left, the Sun, Earth and Moon, from a 10th-century CE Greek copy. On the Sizes and Distances (of the Sun and Moon) (Ancient Greek: Περὶ μεγεθῶν καὶ ἀποστημάτων [ἡλίου καὶ σελήνης], romanized: Perì megethôn kaì apostēmátōn [hēlíou kaì selḗnēs]) is widely accepted ...
A light-minute is 60 light-seconds, and so the average distance between Earth and the Sun is 8.317 light-minutes. The average distance between Pluto and the Sun (34.72 AU [5]) is 4.81 light-hours. [6] Humanity's most distant artificial object, Voyager 1, has an interstellar velocity of 3.57 AU per year, [7] or 29.7 light-minutes per year. [8]
On Sizes and Distances (of the Sun and Moon) (Greek: Περὶ μεγεθῶν καὶ ἀποστημάτων [ἡλίου καὶ σελήνης], romanized: Peri megethon kai apostematon) is a text by the ancient Greek astronomer Hipparchus (c. 190 – c. 120 BC) in which approximations are made for the radii of the Sun and the Moon as well as their distances from the Earth.
The Sun's distance from Earth is about 400 times the Moon's distance, and the Sun's diameter is about 400 times the Moon's diameter. Because these ratios are approximately the same, the Sun and the Moon as seen from Earth appear to be approximately the same size: about 0.5 degree of arc in angular measure. [6]