Search results
Results from the WOW.Com Content Network
In fracture mechanics, the energy release rate, , is the rate at which energy is transformed as a material undergoes fracture.Mathematically, the energy release rate is expressed as the decrease in total potential energy per increase in fracture surface area, [1] [2] and is thus expressed in terms of energy per unit area.
The J-integral represents a way to calculate the strain energy release rate, or work per unit fracture surface area, in a material. [1] The theoretical concept of J-integral was developed in 1967 by G. P. Cherepanov [2] and independently in 1968 by James R. Rice, [3] who showed that an energetic contour path integral (called J) was independent of the path around a crack.
The heating value (or energy value or calorific value) of a substance, usually a fuel or food (see food energy), is the amount of heat released during the combustion of a specified amount of it. The calorific value is the total energy released as heat when a substance undergoes complete combustion with oxygen under standard conditions.
In other words, a purely elastic solution may be used to calculate the amount of energy available for fracture. The energy release rate for crack growth or strain energy release rate may then be calculated as the change in elastic strain energy per unit area of crack growth, i.e.,
Relationship to energy release rate and J-integral [ edit ] In plane stress conditions, the strain energy release rate ( G {\displaystyle G} ) for a crack under pure mode I, or pure mode II loading is related to the stress intensity factor by:
The rate of heat flow is the amount of heat that is transferred per unit of time in some material, usually measured in watts (joules per second). Heat is the flow of thermal energy driven by thermal non-equilibrium, so the term 'heat flow' is a redundancy (i.e. a pleonasm). Heat must not be confused with stored thermal energy, and moving a hot ...
The decay energy is the mass difference Δm between the parent and the daughter atom and particles. It is equal to the energy of radiation E . If A is the radioactive activity , i.e. the number of transforming atoms per time, M the molar mass, then the radiation power P is:
In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol ) is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure–volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure.