Search results
Results from the WOW.Com Content Network
The volume (V) and surface area (S) of a toroid are given by the following equations, where r is the radius of the circular section, and R is the radius of the overall shape. V = 2 π 2 r 2 R {\displaystyle V=2\pi ^{2}r^{2}R}
The total volume of is thus (). The total surface area of is given by the expression (/) + (/). [6] [7] Therefore, the construction's volume approaches zero while its surface area increases without bound. Yet any chosen surface in the construction will be thoroughly punctured as the construction continues so that the limit is neither a solid ...
The ratio of the volume of a sphere to the volume of its circumscribed cylinder is 2:3, as was determined by Archimedes. The principal formulae derived in On the Sphere and Cylinder are those mentioned above: the surface area of the sphere, the volume of the contained ball, and surface area and volume of the cylinder.
In 1999, a theorem due to Haga provided constructions used to divide the side of a square into rational fractions. [19] [20] In late 2001 and early 2002, Britney Gallivan proved the minimum length of paper necessary to fold it in half a certain number of times and folded a 4,000-foot-long (1,200 m) piece of toilet paper twelve times. [21] [22]
The surface-area-to-volume ratio has physical dimension inverse length (L −1) and is therefore expressed in units of inverse metre (m-1) or its prefixed unit multiples and submultiples. As an example, a cube with sides of length 1 cm will have a surface area of 6 cm 2 and a volume of 1 cm 3. The surface to volume ratio for this cube is thus
If the sides of the cube were multiplied by 2, its surface area would be multiplied by the square of 2 and become 24 m 2. Its volume would be multiplied by the cube of 2 and become 8 m 3. The original cube (1 m sides) has a surface area to volume ratio of 6:1. The larger (2 m sides) cube has a surface area to volume ratio of (24/8) 3:1.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In geometry, a hypercube is an n-dimensional analogue of a square (n = 2) and a cube (n = 3); the special case for n = 4 is known as a tesseract.It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length.