Search results
Results from the WOW.Com Content Network
The red curve is an epicycloid traced as the small circle (radius r = 1) rolls around the outside of the large circle (radius R = 3).. In geometry, an epicycloid (also called hypercycloid) [1] is a plane curve produced by tracing the path of a chosen point on the circumference of a circle—called an epicycle—which rolls without slipping around a fixed circle.
The cycloid through the origin, generated by a circle of radius r rolling over the x-axis on the positive side (y ≥ 0), consists of the points (x, y), with = () = (), where t is a real parameter corresponding to the angle through which the rolling circle has rotated. For given t, the circle's centre lies at (x, y) = (rt, r).
The epitrochoid with R = 3, r = 1 and d = 1/2. In geometry, an epitrochoid (/ ɛ p ɪ ˈ t r ɒ k ɔɪ d / or / ɛ p ɪ ˈ t r oʊ k ɔɪ d /) is a roulette traced by a point attached to a circle of radius r rolling around the outside of a fixed circle of radius R, where the point is at a distance d from the center of the exterior circle.
A cycloid (as used for the flank shape of a cycloidal gear) is constructed by rolling a rolling circle on a base circle. If the diameter of this rolling circle is chosen to be infinitely large, a straight line is obtained. The resulting cycloid is then called an involute and the gear is called an involute gear. In this respect involute gears ...
If the rolling curve is a circle and the fixed curve is a line then the roulette is a trochoid. If, in this case, the point lies on the circle then the roulette is a cycloid . A related concept is a glissette , the curve described by a point attached to a given curve as it slides along two (or more) given curves.
In fact, for a circle the size of the Earth's equator, with a circumference of 40,075 kilometres, one edge of a megagon inscribed in such a circle would be slightly over 40 meters long. The difference between the perimeter of the inscribed megagon and the circumference of this circle comes to less than 1/16 millimeters. [3]
The regular 65537-gon (one with all sides equal and all angles equal) is of interest for being a constructible polygon: that is, it can be constructed using a compass and an unmarked straightedge. This is because 65,537 is a Fermat prime , being of the form 2 2 n + 1 (in this case n = 4).
nephroid: tangents as chords of a circle, principle nephroid: tangents as chords of a circle. Similar to the generation of a cardioid as envelope of a pencil of lines the following procedure holds: Draw a circle, divide its perimeter into equal spaced parts with points (see diagram) and number them consecutively.