Search results
Results from the WOW.Com Content Network
In biochemistry, a zymogen (/ ˈ z aɪ m ə dʒ ən,-m oʊ-/ [1] [2]), also called a proenzyme (/ ˌ p r oʊ ˈ ɛ n z aɪ m / [3] [4]), is an inactive precursor of an enzyme.A zymogen requires a biochemical change (such as a hydrolysis reaction revealing the active site, or changing the configuration to reveal the active site) for it to become an active enzyme.
Enzyme denaturation is normally linked to temperatures above a species' normal level; as a result, enzymes from bacteria living in volcanic environments such as hot springs are prized by industrial users for their ability to function at high temperatures, allowing enzyme-catalysed reactions to be operated at a very high rate.
Due to the unique function of lysozyme in which it can digest the cell wall and causes osmotic shock (burst the cell by suddenly changing solute concentration around the cell and thus the osmotic pressure), lysozyme is commonly used in lab setting to release proteins from bacterium periplasm while the inner membrane remains sealed as vesicles ...
An endoenzyme, or intracellular enzyme, is an enzyme that functions within the cell in which it was produced. [1] Because the majority of enzymes fall within this category, the term is used primarily to differentiate a specific enzyme from an exoenzyme. It is possible for a single enzyme to have both endoenzymatic and exoenzymatic functions ...
Because a phosphatase enzyme catalyzes the hydrolysis of its substrate, it is a subcategory of hydrolases. [1] Phosphatase enzymes are essential to many biological functions, because phosphorylation (e.g. by protein kinases) and dephosphorylation (by phosphatases) serve diverse roles in cellular regulation and signaling. [2]
Organisation of enzyme structure and lysozyme example. Binding sites in blue, catalytic site in red and peptidoglycan substrate in black. (In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction.
Enzymes appear in this category according to the EC number classification: EC 1 Oxidoreductases: catalyze oxidation/reduction reactions; EC 2 Transferases: transfer a functional group (e.g. a methyl or phosphate group) EC 3 Hydrolases: catalyze the hydrolysis of various bonds; EC 4 Lyases: cleave various bonds by means other than hydrolysis and ...
The alternative oxidase is an integral monotopic membrane protein that is tightly bound to the inner mitochondrial membrane from matrix side [18] The enzyme has been predicted to contain a coupled diiron center on the basis of a conserved sequence motif consisting of the proposed iron ligands, four glutamate and two histidine amino acid residues. [19]