Search results
Results from the WOW.Com Content Network
In materials science, material failure is the loss of load carrying capacity of a material unit. This definition introduces to the fact that material failure can be examined in different scales, from microscopic, to macroscopic. In structural problems, where the structural response may be beyond the initiation of nonlinear material behaviour ...
As the partial dislocations repel, stacking fault is created in between. By nature of stacking fault being a defect, it has higher energy than that of a perfect crystal, so acts to attract the partial dislocations together again. When this attractive force balance the repulsive force described above, the defects are in equilibrium state. [4]
The difference between this model and the previous nucleation-and-growth models lies within the assumptions: the field boundary model assumes that grain size reduces in the dislocation creep field, and enlarges in the diffusion creep field, but it is not the case in the previous models.
graph with an example of steps in a failure mode and effects analysis. Failure mode and effects analysis (FMEA; often written with "failure modes" in plural) is the process of reviewing as many components, assemblies, and subsystems as possible to identify potential failure modes in a system and their causes and effects.
Angular Material is a UI component library that implements Material Design in Angular. [41] It provides a collection of reusable components that adhere to Google's Material Design specifications, aiming to offer a consistent user interface across different devices and platforms.
To overcome the "issue" of having the shear stress axis downward in the Mohr-circle space, there is an alternative sign convention where positive shear stresses are assumed to rotate the material element in the clockwise direction and negative shear stresses are assumed to rotate the material element in the counterclockwise direction (Figure 5 ...
In mechanical engineering, backlash, sometimes called lash, play, or slop, is a clearance or lost motion in a mechanism caused by gaps between the parts. It can be defined as "the maximum distance or angle through which any part of a mechanical system may be moved in one direction without applying appreciable force or motion to the next part in mechanical sequence."
The resulting fault if alignment is not achieved within the demanded specifications is shaft misalignment, which may be offset, angular, or both. Misalignment can cause increased vibration and loads on the machine parts for which they have not been designed (i.e. improper operation).