enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dirichlet function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_function

    The Dirichlet function can be constructed as the double pointwise limit of a sequence of continuous functions, as follows: , = ((⁡ (!))) for integer j and k. This shows that the Dirichlet function is a Baire class 2 function.

  3. Dirichlet L-function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_L-function

    The Dirichlet L-function L(s, χ) = 1 − 3 −s + 5 −s − 7 −s + ⋅⋅⋅ (sometimes given the special name Dirichlet beta function), with trivial zeros at the negative odd integers. Let χ be a primitive character modulo q, with q > 1. There are no zeros of L(s, χ) with Re(s) > 1. For Re(s) < 0, there are zeros at certain negative ...

  4. Nowhere continuous function - Wikipedia

    en.wikipedia.org/wiki/Nowhere_continuous_function

    One example of such a function is the indicator function of the rational numbers, also known as the Dirichlet function. This function is denoted as 1 Q {\displaystyle \mathbf {1} _{\mathbb {Q} }} and has domain and codomain both equal to the real numbers .

  5. Dirichlet's test - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_test

    In mathematics, Dirichlet's test is a method of testing for the convergence of a series that is especially useful for proving conditional convergence. It is named after its author Peter Gustav Lejeune Dirichlet , and was published posthumously in the Journal de Mathématiques Pures et Appliquées in 1862.

  6. Dirichlet beta function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_beta_function

    For every odd positive integer +, the following equation holds: [3] (+) = ()!() +where is the n-th Euler Number.This yields: =,() =,() =,() =For the values of the Dirichlet beta function at even positive integers no elementary closed form is known, and no method has yet been found for determining the arithmetic nature of even beta values (similarly to the Riemann zeta function at odd integers ...

  7. Peter Gustav Lejeune Dirichlet - Wikipedia

    en.wikipedia.org/wiki/Peter_Gustav_Lejeune_Dirichlet

    Johann Peter Gustav Lejeune Dirichlet (/ ˌ d ɪər ɪ ˈ k l eɪ /; [1] German: [ləˈʒœn diʁiˈkleː]; [2] 13 February 1805 – 5 May 1859) was a German mathematician. In number theory , he proved special cases of Fermat's last theorem and created analytic number theory .

  8. Dirichlet hyperbola method - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_hyperbola_method

    An example of the Dirichlet hyperbola method with =,, and . In number theory, the Dirichlet hyperbola method is a technique to evaluate the sum = = (),where f is a multiplicative function.

  9. Dirichlet convolution - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_convolution

    The set of arithmetic functions forms a commutative ring, the Dirichlet ring, under pointwise addition, where f + g is defined by (f + g)(n) = f(n) + g(n), and Dirichlet convolution. The multiplicative identity is the unit function ε defined by ε ( n ) = 1 if n = 1 and ε ( n ) = 0 if n > 1 .