Search results
Results from the WOW.Com Content Network
Original file (1,275 × 1,650 pixels, file size: 6.82 MB, MIME type: application/pdf, 156 pages) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
In probability theory and statistics, the law of the unconscious statistician, or LOTUS, is a theorem which expresses the expected value of a function g(X) of a random variable X in terms of g and the probability distribution of X. The form of the law depends on the type of random variable X in question.
For example, with a starting value of 10, at each iteration, a Gaussian random variable having mean 0.1 and standard deviation 1 is added to the value from the previous iteration. In this formula, s is 10, σ is 1, μ is 0.1, and so r is the square root of 1.01, or about 1.005. The mean of the distribution added to the previous value every time ...
The probability is sometimes written to distinguish it from other functions and measure P to avoid having to define "P is a probability" and () is short for ({: ()}), where is the event space, is a random variable that is a function of (i.e., it depends upon ), and is some outcome of interest within the domain specified by (say, a particular ...
In statistics, the Bhattacharyya distance is a quantity which represents a notion of similarity between two probability distributions. [1] It is closely related to the Bhattacharyya coefficient, which is a measure of the amount of overlap between two statistical samples or populations.
Then the unconditional probability that = is 3/6 = 1/2 (since there are six possible rolls of the dice, of which three are even), whereas the probability that = conditional on = is 1/3 (since there are three possible prime number rolls—2, 3, and 5—of which one is even).
where P(t) is the transition matrix of jump t, i.e., P(t) is the matrix such that entry (i,j) contains the probability of the chain moving from state i to state j in t steps. As a corollary, it follows that to calculate the transition matrix of jump t , it is sufficient to raise the transition matrix of jump one to the power of t , that is
In mathematics and statistics, a probability vector or stochastic vector is a vector with non-negative entries that add up to one.. The positions (indices) of a probability vector represent the possible outcomes of a discrete random variable, and the vector gives us the probability mass function of that random variable, which is the standard way of characterizing a discrete probability ...