Search results
Results from the WOW.Com Content Network
The DVD format uses the 48 kHz sampling rate, and its doublings. In digital audio, 48,000 Hz (also represented as 48 kHz or DVD Quality) is a common sampling rate. It has become the standard for professional audio and video. 48 kHz is evenly divisible by 24, a common frame rate for media, such as film, unlike 44.1 kHz. [i]
For most phonemes, almost all of the energy is contained in the 100 Hz – 4 kHz range, allowing a sampling rate of 8 kHz. This is the sampling rate used by nearly all telephony systems, which use the G.711 sampling and quantization specifications. [citation needed]
For example, Compact Disc Digital Audio and Digital Audio Tape systems use different sampling rates, and American television, European television, and movies all use different frame rates. Sample-rate conversion prevents changes in speed and pitch that would otherwise occur when transferring recorded material between such systems.
The selection of the sample rate was based primarily on the need to reproduce the audible frequency range of 20–20,000 Hz (20 kHz). The Nyquist–Shannon sampling theorem states that a sampling rate of more than twice the maximum frequency of the signal to be recorded is needed, resulting in a required rate of greater than 40 kHz.
Whereas DVD-Video audio formats such as Dolby Digital and DTS can be sent via the player's digital output to a receiver for conversion to analog form and distribution to speakers, DVD-Audio is not allowed to be delivered via unencrypted digital audio link at sample rates higher than 48 kHz (i.e., ordinary DVD-Video quality) due to concerns ...
For a given sampling rate (samples per second), the Nyquist frequency (cycles per second) is the frequency whose cycle-length (or period) is twice the interval between samples, thus 0.5 cycle/sample. For example, audio CDs have a sampling rate of 44100 samples/second. At 0.5 cycle/sample, the corresponding Nyquist frequency is 22050 cycles/second .
The audio contained in a CD-DA consists of two-channel signed 16-bit LPCM sampled at 44,100 Hz and written as a little-endian interleaved stream with left channel coming first. The sampling rate is adapted from that attained when recording digital audio on videotape with a PCM adaptor, an earlier way of storing digital audio.
When is normalized with reference to the sampling rate as ′ =, the normalized Nyquist angular frequency is π radians/sample. The following table shows examples of normalized frequency for f = 1 {\displaystyle f=1} kHz , f s = 44100 {\displaystyle f_{s}=44100} samples/second (often denoted by 44.1 kHz ), and 4 normalization conventions: