Search results
Results from the WOW.Com Content Network
The Ostwald law of dilution provides a satisfactory description of the concentration dependence of the conductivity of weak electrolytes like CH 3 COOH and NH 4 OH. [ 3 ] [ 4 ] The variation of molar conductivity is essentially due to the incomplete dissociation of weak electrolytes into ions.
Ostwald's law of dilution, which gives the dissociation constant of a weak electrolyte as a function of concentration, can be written in terms of molar conductivity. Thus, the p K a values of acids can be calculated by measuring the molar conductivity and extrapolating to zero concentration.
The dilution in welding terms is defined as the weight of the base metal melted divided by the total weight of the weld metal. For example, if we have a dilution of 0.40, the fraction of the weld metal that came from the consumable electrode is 0.60.
In thermodynamics, an activity coefficient is a factor used to account for deviation of a mixture of chemical substances from ideal behaviour. [1] In an ideal mixture, the microscopic interactions between each pair of chemical species are the same (or macroscopically equivalent, the enthalpy change of solution and volume variation in mixing is zero) and, as a result, properties of the mixtures ...
For some users, the following may create a greater ammount of understanding/clarity, in addition to just having a formula. For any weak electrolyte, Ostwald's dilution law states that the degree of dissociation is inversely proportional to square root of the molar concentration and is directly proportional to the square root of the volume containing one mole of electrolyte.
In thermochemistry, the enthalpy of solution (heat of solution or enthalpy of solvation) is the enthalpy change associated with the dissolution of a substance in a solvent at constant pressure resulting in infinite dilution. The enthalpy of solution is most often expressed in kJ/mol at constant temperature.
The van 't Hoff factor i (named after Dutch chemist Jacobus Henricus van 't Hoff) is a measure of the effect of a solute on colligative properties such as osmotic pressure, relative lowering in vapor pressure, boiling-point elevation and freezing-point depression.
The conservation of mass is expressed locally by the fact that the flow of mass density satisfies the continuity equation: + =, where is the mass flux vector. The formulation of energy conservation is generally not in the form of a continuity equation because it includes contributions both from the macroscopic mechanical energy of the fluid flow and of the microscopic internal energy.