Search results
Results from the WOW.Com Content Network
Methylphosphonyl dichloride (DC) or dichloro is an organophosphorus compound. It has commercial application in oligonucleotide synthesis, [1] but is most notable as being a precursor to several chemical weapons agents. It is a white crystalline solid that melts slightly above room temperature. [2]
Modeling photon propagation with Monte Carlo methods is a flexible yet rigorous approach to simulate photon transport. In the method, local rules of photon transport are expressed as probability distributions which describe the step size of photon movement between sites of photon-matter interaction and the angles of deflection in a photon's trajectory when a scattering event occurs.
Methyldichlorophosphine belongs to the group of halophosphines, some of which are used as intermediates in the production of plant protection agents, stabilizers for plastics, and catalysts.
Monte Carlo N-Particle Transport (MCNP) [2] is a general-purpose, continuous-energy, generalized-geometry, time-dependent, Monte Carlo radiation transport code designed to track many particle types over broad ranges of energies and is developed by Los Alamos National Laboratory.
Methylphosphonic acid is an organophosphorus compound with the chemical formula CH 3 P(O)(OH) 2. The phosphorus center is tetrahedral and is bonded to a methyl group, two OH groups and an oxygen. Methylphosphonic acid is a white, non-volatile solid that is poorly soluble in organic solvent but soluble in water and common alcohols.
It will react with thionyl chloride to produce methylphosphonic acid dichloride, which is used in the production of sarin and soman nerve agents. Various amines can be used to catalyse this process. [3] It can be used as a sarin-simulant for the calibration of organophosphorus detectors.
Intracellular transport is the movement of vesicles and substances within a cell. Intracellular transport is required for maintaining homeostasis within the cell by responding to physiological signals. [1] Proteins synthesized in the cytosol are distributed to their respective organelles, according to their specific amino acid’s sorting ...
In computational and mathematical biology, a biological lattice-gas cellular automaton (BIO-LGCA) is a discrete model for moving and interacting biological agents, [1] a type of cellular automaton. The BIO-LGCA is based on the lattice-gas cellular automaton (LGCA) model used in fluid dynamics. A BIO-LGCA model describes cells and other motile ...