Search results
Results from the WOW.Com Content Network
In mathematics, the Dirichlet function [1] [2] is the indicator function of the set of rational numbers, i.e. () = if x is a rational number and () = if x is not a rational number (i.e. is an irrational number).
The Dirichlet L-function L(s, χ) = 1 − 3 −s + 5 −s − 7 −s + ⋅⋅⋅ (sometimes given the special name Dirichlet beta function), with trivial zeros at the negative odd integers. Let χ be a primitive character modulo q, with q > 1. There are no zeros of L(s, χ) with Re(s) > 1. For Re(s) < 0, there are zeros at certain negative ...
In analytic number theory and related branches of mathematics, a complex-valued arithmetic function: is a Dirichlet character of modulus (where is a positive integer) if for all integers and : [1] χ ( a b ) = χ ( a ) χ ( b ) ; {\displaystyle \chi (ab)=\chi (a)\chi (b);} that is, χ {\displaystyle \chi } is completely multiplicative .
The set of arithmetic functions forms a commutative ring, the Dirichlet ring, under pointwise addition, where f + g is defined by (f + g)(n) = f(n) + g(n), and Dirichlet convolution. The multiplicative identity is the unit function ε defined by ε ( n ) = 1 if n = 1 and ε ( n ) = 0 if n > 1 .
For every odd positive integer +, the following equation holds: [3] (+) = ()!() +where is the n-th Euler Number.This yields: =,() =,() =,() =For the values of the Dirichlet beta function at even positive integers no elementary closed form is known, and no method has yet been found for determining the arithmetic nature of even beta values (similarly to the Riemann zeta function at odd integers ...
Of particular importance is the fact that the L 1 norm of D n on [,] diverges to infinity as n → ∞.One can estimate that ‖ ‖ = (). By using a Riemann-sum argument to estimate the contribution in the largest neighbourhood of zero in which is positive, and Jensen's inequality for the remaining part, it is also possible to show that: ‖ ‖ + where is the sine integral
In number theory, a Hecke character is a generalisation of a Dirichlet character, introduced by Erich Hecke to construct a class of L-functions larger than Dirichlet L-functions, and a natural setting for the Dedekind zeta-functions and certain others which have functional equations analogous to that of the Riemann zeta-function.
For example, the solution to the Dirichlet problem for the unit disk in R 2 is given by the Poisson integral formula. If f {\displaystyle f} is a continuous function on the boundary ∂ D {\displaystyle \partial D} of the open unit disk D {\displaystyle D} , then the solution to the Dirichlet problem is u ( z ) {\displaystyle u(z)} given by