Search results
Results from the WOW.Com Content Network
In computer science, a literal is a textual representation (notation) of a value as it is written in source code. [1] [2] Almost all programming languages have notations for atomic values such as integers, floating-point numbers, and strings, and usually for Booleans and characters; some also have notations for elements of enumerated types and compound values such as arrays, records, and objects.
32-bit compilers emit, respectively: _f _g@4 @h@4 In the stdcall and fastcall mangling schemes, the function is encoded as _name@X and @name@X respectively, where X is the number of bytes, in decimal, of the argument(s) in the parameter list (including those passed in registers, for fastcall).
A string is defined as a contiguous sequence of code units terminated by the first zero code unit (often called the NUL code unit). [1] This means a string cannot contain the zero code unit, as the first one seen marks the end of the string. The length of a string is the number of code units before the zero code unit. [1]
However, \1111 is the octal escape sequence \111 followed by the digit 1. In order to denote the byte with numerical value 1, followed by the digit 1, one could use "\1""1", since C concatenates adjacent string literals. Some three-digit octal escape sequences are too large to fit in a single byte.
In Python, if a name is intended to be "private", it is prefixed by one or two underscores. Private variables are enforced in Python only by convention. Names can also be suffixed with an underscore to prevent conflict with Python keywords. Prefixing with double underscores changes behaviour in classes with regard to name mangling.
In mathematics and in computer programming, a variadic function is a function of indefinite arity, i.e., one which accepts a variable number of arguments. Support for variadic functions differs widely among programming languages. The term variadic is a neologism, dating back to 1936–1937. [1] The term was not widely used until the 1970s.
Φ functions are not implemented as machine operations on most machines. A compiler can implement a Φ function by inserting "move" operations at the end of every predecessor block. In the example above, the compiler might insert a move from y 1 to y 3 at the end of the middle-left block and a move from y 2 to y 3 at the
Constant folding is the process of recognizing and evaluating constant expressions at compile time rather than computing them at runtime. Terms in constant expressions are typically simple literals, such as the integer literal 2, but they may also be variables whose values are known at compile time.