enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Copper (II) chloride - Wikipedia

    en.wikipedia.org/wiki/Copper(II)_chloride

    [12] [13] Copper(II) chloride reacts with several metals to produce copper metal or copper(I) chloride (CuCl) with oxidation of the other metal. To convert copper(II) chloride to copper(I) chloride, it can be convenient to reduce an aqueous solution with sulfur dioxide as the reductant: [8] 2 CuCl 2 + SO 2 + 2 H 2 O → 2 CuCl + 2 HCl + H 2 SO 4

  3. Copper–chlorine cycle - Wikipedia

    en.wikipedia.org/wiki/Copper–chlorine_cycle

    Simplified diagram of the Copper–Chlorine cycle. The copper–chlorine cycle (Cu–Cl cycle) is a four-step thermochemical cycle for the production of hydrogen. The Cu–Cl cycle is a hybrid process that employs both thermochemical and electrolysis steps. It has a maximum temperature requirement of about 530 degrees Celsius. [1]

  4. Electrolysis - Wikipedia

    en.wikipedia.org/wiki/Electrolysis

    For the electrolysis of a neutral (pH 7) sodium chloride solution, the reduction of sodium ion is thermodynamically very difficult and water is reduced evolving hydrogen leaving hydroxide ions in solution.

  5. Electrolytic process - Wikipedia

    en.wikipedia.org/wiki/Electrolytic_process

    Electrolysis is usually done in bulk using hundreds of sheets of metal connected to an electric power source. In the production of copper, these pure sheets of copper are used as starter material for the cathodes, and are then lowered into a solution such as copper sulfate with the large anodes that are cast from impure (97% pure) copper.

  6. Exchange current density - Wikipedia

    en.wikipedia.org/wiki/Exchange_current_density

    The nature of the electroactive species (the analyte) in the solution also critically affects the exchange current densities, both the reduced and oxidized form. Less important but still relevant are the environment of the solution including the solvent, nature of other electrolytes, and temperature.

  7. Copper(I) chloride - Wikipedia

    en.wikipedia.org/wiki/Copper(I)_chloride

    The main use of copper(I) chloride is as a precursor to the fungicide copper oxychloride. For this purpose aqueous copper(I) chloride is generated by comproportionation and then air-oxidized: [12] Cu + CuCl 2 → 2 CuCl 4 CuCl + O 2 + 2 H 2 O → Cu 3 Cl 2 (OH) 4 + CuCl 2. Copper(I) chloride catalyzes a variety of organic reactions, as

  8. Electrolytic cell - Wikipedia

    en.wikipedia.org/wiki/Electrolytic_cell

    Important examples of electrolysis are the decomposition of water into hydrogen and oxygen, and bauxite into aluminum and other chemicals. Electroplating (e.g., of copper, silver, nickel, or chromium) is done using an electrolytic cell. Electrolysis is a technique that uses a direct electric current (DC).

  9. Bulk electrolysis - Wikipedia

    en.wikipedia.org/wiki/Bulk_electrolysis

    The bulk electrolysis can also be useful for synthetic purposes if the product of the electrolysis can be isolated. This is most convenient when the product is neutral and can be isolated from the electrolyte solution through extraction or when the product plates out on the electrode or precipitates in another fashion.