Search results
Results from the WOW.Com Content Network
The principal subdivision of the thalamus into nucleus groups is the trisection of each thalamus (left and right) by a Y-shaped internal medullary lamina. This trisection divides each thalamus into anterior, medial and lateral groups of nuclei. [8] The medial group is subdivided into the medial dorsal nucleus and midline group.
The hypothalamus controls the anterior pituitary's hormone secretion by sending releasing factors, called tropic hormones, down the hypothalamo-hypophysial portal system. [3] For example, thyrotropin-releasing hormone released by the hypothalamus in to the portal system stimulates the secretion of thyroid-stimulating hormone by the anterior ...
In the hypothalamic–adenohypophyseal axis, releasing hormones, also known as hypophysiotropic or hypothalamic hormones, are released from the median eminence, a prolongation of the hypothalamus, into the hypophyseal portal system, which carries them to the anterior pituitary where they exert their regulatory functions on the secretion of ...
The populations of neurons found in the arcuate nucleus are based on the hormones they secrete or interact with and are responsible for hypothalamic function, such as regulating hormones released from the pituitary gland or secreting their own hormones. Neurons in this region are also responsible for integrating information and providing inputs ...
The hypothalamus is located in the brain and secretes GnRH. [1] GnRH travels down the anterior portion of the pituitary via the hypophyseal portal system and binds to receptors on the secretory cells of the adenohypophysis. [2] In response to GnRH stimulation these cells produce LH and FSH, which travel into the blood stream. [3]
The thyroid secretes thyroxine, the pituitary secretes growth hormone, the pineal secretes melatonin, the testis secretes testosterone, and the ovaries secrete estrogen and progesterone. [2] Glands that signal each other in sequence are often referred to as an axis, such as the hypothalamic–pituitary–adrenal axis.
The epithalamus also serves as a connecting point for the dorsal diencephalic conduction system, which is responsible for carrying information from the limbic forebrain to limbic midbrain structures. [ 4 ] [ 5 ] Some functions of its components include the secretion of melatonin from the pineal gland ( circadian rhythms ), regulation of motor ...
Many of its neurons project to the posterior pituitary where they secrete oxytocin, and a smaller amount of vasopressin. Other secretions are corticotropin-releasing hormone (CRH) and thyrotropin-releasing hormone (TRH). [1] CRH and TRH are secreted into the hypophyseal portal system, and target different neurons in the anterior pituitary.