Search results
Results from the WOW.Com Content Network
A decomposition paradigm in computer programming is a strategy for organizing a program as a number of parts, and usually implies a specific way to organize a program text. Typically the aim of using a decomposition paradigm is to optimize some metric related to program complexity, for example a program's modularity or its maintainability.
Functional Decomposition is a design method intending to produce a non-implementation, architectural description of a computer program. The software architect first establishes a series of functions and types that accomplishes the main processing problem of the computer program, decomposes each to reveal common functions and types, and finally ...
Decomposition: This is a version of Schur decomposition where and only contain real numbers. One can always write A = V S V T {\displaystyle A=VSV^{\mathsf {T}}} where V is a real orthogonal matrix , V T {\displaystyle V^{\mathsf {T}}} is the transpose of V , and S is a block upper triangular matrix called the real Schur form .
The decomposition can be derived from the fundamental property of eigenvectors: = = =. The linearly independent eigenvectors q i with nonzero eigenvalues form a basis (not necessarily orthonormal) for all possible products Ax, for x ∈ C n, which is the same as the image (or range) of the corresponding matrix transformation, and also the ...
The RQ decomposition transforms a matrix A into the product of an upper triangular matrix R (also known as right-triangular) and an orthogonal matrix Q. The only difference from QR decomposition is the order of these matrices. QR decomposition is Gram–Schmidt orthogonalization of columns of A, started from the first column.
The singular value decomposition can be used for computing the pseudoinverse of a matrix. The pseudoinverse of the matrix ... For example, some visual area V1 ...
This decomposition is called the Cholesky decomposition. If is positive definite, then the Cholesky decomposition exists and is unique. Furthermore, computing the Cholesky decomposition is more efficient and numerically more stable than computing some other LU decompositions.
In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.