enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I].

  3. Tridiagonal matrix algorithm - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    Simplified forms of Gaussian elimination have been developed for these situations. [ 6 ] The textbook Numerical Mathematics by Alfio Quarteroni , Sacco and Saleri, lists a modified version of the algorithm which avoids some of the divisions (using instead multiplications), which is beneficial on some computer architectures.

  4. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    In this case it is faster (and more convenient) to do an LU decomposition of the matrix A once and then solve the triangular matrices for the different b, rather than using Gaussian elimination each time. The matrices L and U could be thought to have "encoded" the Gaussian elimination process.

  5. Row echelon form - Wikipedia

    en.wikipedia.org/wiki/Row_echelon_form

    The reduced row echelon form of a matrix is unique and does not depend on the sequence of elementary row operations used to obtain it. The variant of Gaussian elimination that transforms a matrix to reduced row echelon form is sometimes called Gauss–Jordan elimination. A matrix is in column echelon form if its transpose is in row echelon form.

  6. Elimination theory - Wikipedia

    en.wikipedia.org/wiki/Elimination_theory

    Elimination theory culminated with the work of Leopold Kronecker, and finally Macaulay, who introduced multivariate resultants and U-resultants, providing complete elimination methods for systems of polynomial equations, which are described in the chapter on Elimination theory in the first editions (1930) of van der Waerden's Moderne Algebra.

  7. Sudoku solving algorithms - Wikipedia

    en.wikipedia.org/wiki/Sudoku_solving_algorithms

    Sudoku can be solved using stochastic (random-based) algorithms. [11] [12] An example of this method is to: Randomly assign numbers to the blank cells in the grid. Calculate the number of errors. "Shuffle" the inserted numbers until the number of mistakes is reduced to zero. A solution to the puzzle is then found.

  8. List of algorithms - Wikipedia

    en.wikipedia.org/wiki/List_of_algorithms

    Gaussian elimination; Gauss–Jordan elimination: solves systems of linear equations; Gauss–Seidel method: solves systems of linear equations iteratively; Levinson recursion: solves equation involving a Toeplitz matrix; Stone's method: also known as the strongly implicit procedure or SIP, is an algorithm for solving a sparse linear system of ...

  9. Numerical analysis - Wikipedia

    en.wikipedia.org/wiki/Numerical_analysis

    Direct methods compute the solution to a problem in a finite number of steps. These methods would give the precise answer if they were performed in infinite precision arithmetic. Examples include Gaussian elimination, the QR factorization method for solving systems of linear equations, and the simplex method of linear programming.