enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear trend estimation - Wikipedia

    en.wikipedia.org/wiki/Linear_trend_estimation

    All have the same trend, but more filtering leads to higher r 2 of fitted trend line. The least-squares fitting process produces a value, r-squared (r 2), which is 1 minus the ratio of the variance of the residuals to the variance of the dependent variable. It says what fraction of the variance of the data is explained by the fitted trend line.

  3. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  4. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  5. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression , including variants for ordinary (unweighted), weighted , and generalized (correlated) residuals .

  6. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    A trend line could simply be drawn by eye through a set of data points, but more properly their position and slope is calculated using statistical techniques like linear regression. Trend lines typically are straight lines, although some variations use higher degree polynomials depending on the degree of curvature desired in the line.

  7. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    Although polynomial regression fits a nonlinear model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data. For this reason, polynomial regression is considered to be a special case of multiple linear regression. [1]

  8. Theil–Sen estimator - Wikipedia

    en.wikipedia.org/wiki/Theil–Sen_estimator

    A variation of the Theil–Sen estimator, the repeated median regression of Siegel (1982), determines for each sample point (x i, y i), the median m i of the slopes (y j − y i)/(x j − x i) of lines through that point, and then determines the overall estimator as the median of these medians.

  9. Line fitting - Wikipedia

    en.wikipedia.org/wiki/Line_fitting

    Vertical distance: Simple linear regression; Resistance to outliers: Robust simple linear regression; Perpendicular distance: Orthogonal regression (this is not scale-invariant i.e. changing the measurement units leads to a different line.) Weighted geometric distance: Deming regression