enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Numeric precision in Microsoft Excel - Wikipedia

    en.wikipedia.org/wiki/Numeric_precision_in...

    Both the "compatibility" function STDEVP and the "consistency" function STDEV.P in Excel 2010 return the 0.5 population standard deviation for the given set of values. However, numerical inaccuracy still can be shown using this example by extending the existing figure to include 10 15 , whereupon the erroneous standard deviation found by Excel ...

  3. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    The basic way to maximize a differentiable function is to find the stationary points (the points where the derivative is zero); since the derivative of a sum is just the sum of the derivatives, but the derivative of a product requires the product rule, it is easier to compute the stationary points of the log-likelihood of independent events ...

  4. Contrast (statistics) - Wikipedia

    en.wikipedia.org/wiki/Contrast_(statistics)

    A contrast is defined as the sum of each group mean multiplied by a coefficient for each group (i.e., a signed number, c j). [10] In equation form, = ¯ + ¯ + + ¯ ¯, where L is the weighted sum of group means, the c j coefficients represent the assigned weights of the means (these must sum to 0 for orthogonal contrasts), and ¯ j represents the group means. [8]

  5. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.

  6. Bias of an estimator - Wikipedia

    en.wikipedia.org/wiki/Bias_of_an_estimator

    In statistics, the bias of an estimator (or bias function) is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, "bias" is an objective property of an estimator.

  7. Likelihood-ratio test - Wikipedia

    en.wikipedia.org/wiki/Likelihood-ratio_test

    Assuming H 0 is true, there is a fundamental result by Samuel S. Wilks: As the sample size approaches , and if the null hypothesis lies strictly within the interior of the parameter space, the test statistic defined above will be asymptotically chi-squared distributed with degrees of freedom equal to the difference in dimensionality of and . [14]

  8. F-test - Wikipedia

    en.wikipedia.org/wiki/F-test

    The null hypothesis is rejected if the F calculated from the data is greater than the critical value of the F-distribution for some desired false-rejection probability (e.g. 0.05). Since F is a monotone function of the likelihood ratio statistic, the F-test is a likelihood ratio test.

  9. Efficiency (statistics) - Wikipedia

    en.wikipedia.org/wiki/Efficiency_(statistics)

    The relative efficiency of two unbiased estimators is defined as [12] (,) = ⁡ [()] ⁡ [()] = ⁡ ⁡ ()Although is in general a function of , in many cases the dependence drops out; if this is so, being greater than one would indicate that is preferable, regardless of the true value of .