Search results
Results from the WOW.Com Content Network
The eukaryotic cell cycle consists of four distinct phases: G 1 phase, S phase (synthesis), G 2 phase (collectively known as interphase) and M phase (mitosis and cytokinesis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell's nucleus divides, and cytokinesis, in which the cell's cytoplasm and cell membrane divides forming two daughter cells.
The main mechanism of action of the cell cycle checkpoints is through the regulation of the activities of a family of protein kinases known as the cyclin-dependent kinases (CDKs), which bind to different classes of regulator proteins known as cyclins, with specific cyclin-CDK complexes being formed and activated at different phases of the cell ...
The cell cycle is a series of complex, ordered, sequential events that control how a single cell divides into two cells, and involves several different phases. The phases include the G1 and G2 phases, DNA replication or S phase, and the actual process of cell division, mitosis or M phase. [ 1 ]
Steps of the cell cycle. The restriction point occurs between the G 1 and S phases of interphase.. The restriction point (R), also known as the Start or G 1 /S checkpoint, is a cell cycle checkpoint in the G 1 phase of the animal cell cycle at which the cell becomes "committed" to the cell cycle, and after which extracellular signals are no longer required to stimulate proliferation. [1]
Three types of cell division: binary fission (taking place in prokaryotes), mitosis and meiosis (taking place in eukaryotes).. When cells are ready to divide, because cell size is big enough or because they receive the appropriate stimulus, [20] they activate the mechanism to enter into the cell cycle, and they duplicate most organelles during S (synthesis) phase, including their centrosome.
G 1 phase is particularly important in the cell cycle because it determines whether a cell commits to division or to leaving the cell cycle. [2] If a cell is signaled to remain undivided, instead of moving onto the S phase, it will leave the G 1 phase and move into a state of dormancy called the G 0 phase.
Two checkpoint kinase subtypes have been identified, Chk1 and Chk2. Chk1 is a central component of genome surveillance pathways and is a key regulator of the cell cycle and cell survival. Chk1 is required for the initiation of DNA damage checkpoints and has recently been shown to play a role in the normal (unperturbed) cell cycle. [9]
Steps of the cell cycle. The G 2-M checkpoint occurs between the G 2 and M phases. G2-M arrest. The G 2-M DNA damage checkpoint is an important cell cycle checkpoint in eukaryotic organisms that ensures that cells don't initiate mitosis until damaged or incompletely replicated DNA is sufficiently repaired.