enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Glide reflection - Wikipedia

    en.wikipedia.org/wiki/Glide_reflection

    The isometry group generated by just a glide reflection is an infinite cyclic group. [1] Combining two equal glide reflections gives a pure translation with a translation vector that is twice that of the glide reflection, so the even powers of the glide reflection form a translation group.

  3. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    Glide reflection. Glide reflections, denoted by G c,v,w, where c is a point in the plane, v is a unit vector in R 2, and w is non-null a vector perpendicular to v are a combination of a reflection in the line described by c and v, followed by a translation along w. That is, ,, =,, or in other words,

  4. Frieze group - Wikipedia

    en.wikipedia.org/wiki/Frieze_group

    The translations here arise from the glide reflections, so this group is generated by a glide reflection and either a rotation or a vertical reflection. p11m [∞ +,2] C ∞h Z ∞ ×Dih 1 ∞* jump (THG) Translations, Horizontal reflections, Glide reflections: This group is generated by a translation and the reflection in the horizontal axis.

  5. Euclidean group - Wikipedia

    en.wikipedia.org/wiki/Euclidean_group

    The translations by a given distance in any direction form a conjugacy class; the translation group is the union of those for all distances. In 1D, all reflections are in the same class. In 2D, rotations by the same angle in either direction are in the same class. Glide reflections with translation by the same distance are in the same class. In 3D:

  6. Template:Frieze group notations - Wikipedia

    en.wikipedia.org/wiki/Template:Frieze_group...

    The translations here arise from the glide reflections, so this group is generated by a glide reflection and either a rotation or a vertical reflection. p11m [∞ +,2] C ∞h Z ∞ ×Dih 1 ∞* jump (THG) Translations, Horizontal reflections, Glide reflections: This group is generated by a translation and the reflection in the horizontal axis.

  7. Point groups in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_two_dimensions

    For each of the types D 1, D 2, and D 4 the distinction between the 3, 4, and 2 wallpaper groups, respectively, is determined by the translation vector associated with each reflection in the group: since isometries are in the same coset regardless of translational components, a reflection and a glide reflection with the same mirror are in the ...

  8. Orbifold notation - Wikipedia

    en.wikipedia.org/wiki/Orbifold_notation

    The translations here arise from the glide reflections, so this group is generated by a glide reflection and either a rotation or a vertical reflection. p11m [∞ +,2] C ∞h Z ∞ ×Dih 1 ∞* jump (THG) Translations, Horizontal reflections, Glide reflections: This group is generated by a translation and the reflection in the horizontal axis.

  9. Isometry - Wikipedia

    en.wikipedia.org/wiki/Isometry

    A reflection in a line is an opposite isometry, like R 1 or R 2 on the image. Translation T is a direct isometry: a rigid motion. [1] In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective.