Search results
Results from the WOW.Com Content Network
The set S together with the ordering is then called a well-ordered set (or woset). [1] In some academic articles and textbooks these terms are instead written as wellorder, wellordered, and wellordering or well order, well ordered, and well ordering. Every non-empty well-ordered set has a least element.
When considered as a set, the elements of are the countable ordinals (including finite ordinals), [1] of which there are uncountably many. Like any ordinal number (in von Neumann's approach ), ω 1 {\displaystyle \omega _{1}} is a well-ordered set , with set membership serving as the order relation.
Also, is the smallest uncountable ordinal (to see that it exists, consider the set of equivalence classes of well-orderings of the natural numbers; each such well-ordering defines a countable ordinal, and is the order type of that set), is the smallest ordinal whose cardinality is greater than , and so on, and is the limit of for natural ...
A concept in set theory and logic that categorizes well-ordered sets by their structure, such that two sets have the same order type if there is a bijective function between them that preserves order. ordinal 1. An ordinal is the order type of a well-ordered set, usually represented by a von Neumann ordinal, a transitive set well ordered by ∈. 2.
Also, is the smallest uncountable ordinal (to see that it exists, consider the set of equivalence classes of well-orderings of the natural numbers: each such well-ordering defines a countable ordinal, and is the order type of that set), is the smallest ordinal whose cardinality is greater than , and so on, and is the limit of the for ...
If admits a totally ordered cofinal subset, then we can find a subset that is well-ordered and cofinal in . Any subset of is also well-ordered. Two cofinal subsets of with minimal cardinality (that is, their cardinality is the cofinality of ) need not be order isomorphic (for example if = +, then both + and {+: <} viewed as subsets of have the countable cardinality of the cofinality of but are ...
The axiom of choice guarantees that every set can be well-ordered, which means that a total order can be imposed on its elements such that every nonempty subset has a first element with respect to that order. The order of a well-ordered set is described by an ordinal number. For instance, 3 is the ordinal number of the set {0, 1, 2} with the ...
An infinite ordinal is a regular ordinal if it is a limit ordinal that is not the limit of a set of smaller ordinals that as a set has order type less than . A regular ordinal is always an initial ordinal , though some initial ordinals are not regular, e.g., ω ω {\displaystyle \omega _{\omega }} (see the example below).