Search results
Results from the WOW.Com Content Network
When considered as a set, the elements of are the countable ordinals (including finite ordinals), [1] of which there are uncountably many. Like any ordinal number (in von Neumann's approach ), ω 1 {\displaystyle \omega _{1}} is a well-ordered set , with set membership serving as the order relation.
Also, is the smallest uncountable ordinal (to see that it exists, consider the set of equivalence classes of well-orderings of the natural numbers; each such well-ordering defines a countable ordinal, and is the order type of that set), is the smallest ordinal whose cardinality is greater than , and so on, and is the limit of for natural ...
The set S together with the ordering is then called a well-ordered set (or woset). [1] In some academic articles and textbooks these terms are instead written as wellorder, wellordered, and wellordering or well order, well ordered, and well ordering. Every non-empty well-ordered set has a least element.
If admits a totally ordered cofinal subset, then we can find a subset that is well-ordered and cofinal in . Any subset of is also well-ordered. Two cofinal subsets of with minimal cardinality (that is, their cardinality is the cofinality of ) need not be order isomorphic (for example if = +, then both + and {+: <} viewed as subsets of have the countable cardinality of the cofinality of but are ...
A concept in set theory and logic that categorizes well-ordered sets by their structure, such that two sets have the same order type if there is a bijective function between them that preserves order. ordinal 1. An ordinal is the order type of a well-ordered set, usually represented by a von Neumann ordinal, a transitive set well ordered by ∈. 2.
A set X is well-ordered by a strict total order if every non-empty subset of X has a least element under the ordering. The well-ordering theorem together with Zorn's lemma are the most important mathematical statements that are equivalent to the axiom of choice (often called AC, see also Axiom of choice § Equivalents).
Every well-ordered set (S,<) is order-isomorphic to the set of ordinals less than one specific ordinal number under their natural ordering. This canonical set is the order type of (S,<). Essentially, an ordinal is intended to be defined as an isomorphism class of well-ordered sets: that is, as an equivalence class for the equivalence relation ...
By the well-ordering principle, has a minimum element such that when =, the equation is false, but true for all positive integers less than . The equation is true for n = 1 {\displaystyle n=1} , so c > 1 {\displaystyle c>1} ; c − 1 {\displaystyle c-1} is a positive integer less than c {\displaystyle c} , so the equation holds for c − 1 ...