Search results
Results from the WOW.Com Content Network
Different fields of application have different definitions for the term. All the meanings are very similar in concept: In chemistry, the transmission coefficient refers to a chemical reaction overcoming a potential barrier; in optics and telecommunications it is the amplitude of a wave transmitted through a medium or conductor to that of the incident wave; in quantum mechanics it is used to ...
Fresnel equations calculator; FreeSnell – Free software computes the optical properties of multilayer materials. Thinfilm – Web interface for calculating optical properties of thin films and multilayer materials (reflection & transmission coefficients, ellipsometric parameters Psi & Delta).
Thinfilm is a web interface that implements the transfer-matrix method, outputting reflection and transmission coefficients, and also ellipsometric parameters Psi and Delta. Luxpop.com is another web interface that implements the transfer-matrix method. Transfer-matrix calculating programs in Python and in Mathematica.
In classical wave-physics, this effect is known as evanescent wave coupling. The likelihood that the particle will pass through the barrier is given by the transmission coefficient, whereas the likelihood that it is reflected is given by the reflection coefficient. Schrödinger's wave-equation allows these coefficients to be calculated.
In quantum mechanics and scattering theory, the one-dimensional step potential is an idealized system used to model incident, reflected and transmitted matter waves.The problem consists of solving the time-independent Schrödinger equation for a particle with a step-like potential in one dimension.
For example, the transmission coefficient of methane hopping in a gas hydrate from one site to an adjacent empty site is between 0.25 and 0.5. [1] Typically, reactive flux correlation function (RFCF) simulations are performed in order to explicitly calculate from the resulting plateau in
The primary coefficients are the physical properties of the line, namely R,C,L and G, from which the secondary coefficients may be derived using the telegrapher's equation. In the field of transmission lines, the term transmission coefficient has a different meaning despite the similarity of name: it is the companion of the reflection coefficient.
In optical physics, transmittance of the surface of a material is its effectiveness in transmitting radiant energy. It is the fraction of incident electromagnetic power that is transmitted through a sample, in contrast to the transmission coefficient, which is the ratio of the transmitted to incident electric field. [2]