enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Negative energy - Wikipedia

    en.wikipedia.org/wiki/Negative_energy

    The negative-energy particle then crosses the event horizon into the black hole, with the law of conservation of energy requiring that an equal amount of positive energy should escape. In the Penrose process , a body divides in two, with one half gaining negative energy and falling in, while the other half gains an equal amount of positive ...

  3. Gravitational energy - Wikipedia

    en.wikipedia.org/wiki/Gravitational_energy

    For two pairwise interacting point particles, the gravitational potential energy is the work that an outside agent must do in order to quasi-statically bring the masses together (which is therefore, exactly opposite the work done by the gravitational field on the masses): = = where is the displacement vector of the mass, is gravitational force acting on it and denotes scalar product.

  4. Gravitational potential - Wikipedia

    en.wikipedia.org/wiki/Gravitational_potential

    The gravitational potential (V) at a location is the gravitational potential energy (U) at that location per unit mass: =, where m is the mass of the object. Potential energy is equal (in magnitude, but negative) to the work done by the gravitational field moving a body to its given position in space from infinity.

  5. Potential energy - Wikipedia

    en.wikipedia.org/wiki/Potential_energy

    There are various types of potential energy, each associated with a particular type of force. For example, the work of an elastic force is called elastic potential energy; work of the gravitational force is called gravitational potential energy; work of the Coulomb force is called electric potential energy; work of the strong nuclear force or weak nuclear force acting on the baryon charge is ...

  6. Gravitational binding energy - Wikipedia

    en.wikipedia.org/wiki/Gravitational_binding_energy

    In this case the binding energy can be considered to be the (negative) difference between the ADM mass of the system, as it is manifest in its gravitational interaction with other distant systems, and the sum of the energies of all the atoms and other elementary particles of the system if disassembled.

  7. Zero-energy universe - Wikipedia

    en.wikipedia.org/wiki/Zero-energy_universe

    Gravitational energy from visible matter accounts for 26–37% of the observed total mass–energy density. [15] Therefore, to fit the concept of a "zero-energy universe" to the observed universe, other negative energy reservoirs besides gravity from baryonic matter are necessary. These reservoirs are frequently assumed to be dark matter. [16]

  8. Minimum total potential energy principle - Wikipedia

    en.wikipedia.org/wiki/Minimum_total_potential...

    The minimum total potential energy principle is a fundamental concept used in physics and engineering. It dictates that at low temperatures a structure or body shall deform or displace to a position that (locally) minimizes the total potential energy , with the lost potential energy being converted into kinetic energy (specifically heat).

  9. Gravitational interaction of antimatter - Wikipedia

    en.wikipedia.org/wiki/Gravitational_interaction...

    However, when moving through a gravitational potential, the frequency and energy of light is shifted. Morrison argued that energy would be created by producing matter and antimatter at one height and then annihilating it higher up, since the photons used in production would have less energy than the photons yielded from annihilation. [6]