enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    k-means clustering is a method of vector quantization, originally from signal processing, that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster.

  3. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  4. Bag-of-words model in computer vision - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model_in...

    The final step for the BoW model is to convert vector-represented patches to "codewords" (analogous to words in text documents), which also produces a "codebook" (analogy to a word dictionary). A codeword can be considered as a representative of several similar patches. One simple method is performing k-means clustering over all the vectors. [7]

  5. Image segmentation - Wikipedia

    en.wikipedia.org/wiki/Image_segmentation

    The K-means algorithm is an iterative technique that is used to partition an image into K clusters. [24] The basic algorithm is Pick K cluster centers, either randomly or based on some heuristic method, for example K-means++; Assign each pixel in the image to the cluster that minimizes the distance between the pixel and the cluster center

  6. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    For example, k-means clustering naturally optimizes object distances, and a distance-based internal criterion will likely overrate the resulting clustering. Therefore, the internal evaluation measures are best suited to get some insight into situations where one algorithm performs better than another, but this shall not imply that one algorithm ...

  7. Fuzzy clustering - Wikipedia

    en.wikipedia.org/wiki/Fuzzy_clustering

    Fuzzy clustering (also referred to as soft clustering or soft k-means) is a form of clustering in which each data point can belong to more than one cluster.. Clustering or cluster analysis involves assigning data points to clusters such that items in the same cluster are as similar as possible, while items belonging to different clusters are as dissimilar as possible.

  8. k-means++ - Wikipedia

    en.wikipedia.org/wiki/K-means++

    In data mining, k-means++ [1] [2] is an algorithm for choosing the initial values (or "seeds") for the k-means clustering algorithm. It was proposed in 2007 by David Arthur and Sergei Vassilvitskii, as an approximation algorithm for the NP-hard k-means problem—a way of avoiding the sometimes poor clusterings found by the standard k-means algorithm.

  9. File:K Means Example Step 2.svg - Wikipedia

    en.wikipedia.org/wiki/File:K_Means_Example_Step...

    This image is part of a series of images showing an example of the operation of the k-means algorithm. This is the second step in which data points are associated with the nearest centroid. Date: 26 July 2007: Source: Own work: Author: Weston.pace