Search results
Results from the WOW.Com Content Network
In mathematics, especially the usage of linear algebra in mathematical physics and differential geometry, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies summation over a set of indexed terms in a formula, thus achieving brevity.
The Einstein tensor allows the Einstein field equations to be written in the concise form: + =, where is the cosmological constant and is the Einstein gravitational constant. From the explicit form of the Einstein tensor , the Einstein tensor is a nonlinear function of the metric tensor, but is linear in the second partial derivatives of the ...
For compactness and convenience, the Ricci calculus incorporates Einstein notation, which implies summation over indices repeated within a term and universal quantification over free indices. Expressions in the notation of the Ricci calculus may generally be interpreted as a set of simultaneous equations relating the components as functions ...
The gradient of the function f(x,y) = −(cos 2 x + cos 2 y) 2 depicted as a projected vector field on the bottom plane. The gradient (or gradient vector field) of a scalar function f(x 1, x 2, x 3, …, x n) is denoted ∇f or ∇ → f where ∇ denotes the vector differential operator, del. The notation grad f is also commonly used to ...
Concretely, in the case where the vector space has an inner product, in matrix notation these can be thought of as row vectors, which give a number when applied to column vectors. We denote this by V ∗ := Hom ( V , K ) {\displaystyle V^{*}:={\text{Hom}}(V,K)} , so that α ∈ V ∗ {\displaystyle \alpha \in V^{*}} is a linear map α : V → K ...
The points just raised are easiest to explain in reverse, starting from the motivation provided by surface theory. In this situation, although the planes being rolled over the surface are tangent planes in a naive sense, the notion of a tangent space is really an infinitesimal notion, [ e ] whereas the planes, as affine subspaces of R 3 , are ...
For example, in changing from meters to millimeters, the coordinate units become smaller and the number measuring a gradient will also become smaller: 1 Kelvin per m becomes 0.001 Kelvin per mm. In Einstein notation , contravariant vectors and components of tensors are shown with superscripts, e.g. x i , and covariant vectors and components of ...
In Feynman subscript notation, = + where the notation ∇ B means the subscripted gradient operates on only the factor B. [ 1 ] [ 2 ] Less general but similar is the Hestenes overdot notation in geometric algebra . [ 3 ]