Search results
Results from the WOW.Com Content Network
Diagram of a typical 3D array. For a multidimensional array, the element with indices i,j would have address B + c · i + d · j, where the coefficients c and d are the row and column address increments, respectively. More generally, in a k-dimensional array, the address of an element with indices i 1, i 2, ..., i k is B + c 1 · i 1 + c 2 · i ...
For example, in the Pascal programming language, the declaration type MyTable = array [1.. 4, 1.. 2] of integer, defines a new array data type called MyTable. The declaration var A: MyTable then defines a variable A of that type, which is an aggregate of eight elements, each being an integer variable identified by two indices.
More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.
Fortran and C use different schemes for their native arrays. Fortran uses "Column Major" , in which all the elements for a given column are stored contiguously in memory. C uses "Row Major" (SoA), which stores all the elements for a given row contiguously in memory. LAPACK defines various matrix representations in memory.
For example, to perform an element by element sum of two arrays, a and b to produce a third c, it is only necessary to write c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x)
Array of structures (AoS) is the opposite (and more conventional) layout, in which data for different fields is interleaved. This is often more intuitive, and supported directly by most programming languages. For example, to store N points in 3D space using an array of structures:
Reducing the range of any index to a single value effectively eliminates that index. This feature can be used, for example, to extract one-dimensional slices (vectors: in 3D, rows, columns, and tubes [1]) or two-dimensional slices (rectangular matrices) from a three-dimensional array. However, since the range can be specified at run-time, type ...
Matrix multiplication is an example of a 2-rank function, because it operates on 2-dimensional objects (matrices). Collapse operators reduce the dimensionality of an input data array by one or more dimensions. For example, summing over elements collapses the input array by 1 dimension.