enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Z-test - Wikipedia

    en.wikipedia.org/wiki/Z-test

    A t-test can be used to account for the uncertainty in the sample variance when the data are exactly normal. Difference between Z-test and t-test: Z-test is used when sample size is large (n>50), or the population variance is known. t-test is used when sample size is small (n<50) and population variance is unknown.

  3. Cochran–Armitage test for trend - Wikipedia

    en.wikipedia.org/wiki/Cochran–Armitage_test_for...

    where R 1 = N 11 + N 12 + N 13, and C 1 = N 11 + N 21, etc. . The trend test statistic is = (), where the t i are weights, and the difference N 1i R 2 −N 2i R 1 can be seen as the difference between N 1i and N 2i after reweighting the rows to have the same total.

  4. Standard score - Wikipedia

    en.wikipedia.org/wiki/Standard_score

    Comparison of the various grading methods in a normal distribution, including: standard deviations, cumulative percentages, percentile equivalents, z-scores, T-scores. In statistics, the standard score is the number of standard deviations by which the value of a raw score (i.e., an observed value or data point) is above or below the mean value of what is being observed or measured.

  5. Paired difference test - Wikipedia

    en.wikipedia.org/wiki/Paired_difference_test

    We could then calculate the sample means within the treated and untreated groups of subjects, and compare these means to each other. In a "paired difference analysis", we would first subtract the pre-treatment value from the post-treatment value for each subject, then compare these differences to zero. See also paired permutation test.

  6. Normality test - Wikipedia

    en.wikipedia.org/wiki/Normality_test

    Simple back-of-the-envelope test takes the sample maximum and minimum and computes their z-score, or more properly t-statistic (number of sample standard deviations that a sample is above or below the sample mean), and compares it to the 68–95–99.7 rule: if one has a 3σ event (properly, a 3s event) and substantially fewer than 300 samples, or a 4s event and substantially fewer than 15,000 ...

  7. List of analyses of categorical data - Wikipedia

    en.wikipedia.org/wiki/List_of_analyses_of...

    This is a list of statistical procedures which can be used for the analysis of categorical data, also known as data on the nominal scale and as categorical variables.

  8. Z-factor - Wikipedia

    en.wikipedia.org/wiki/Z-factor

    The Z-factor is a measure of statistical effect size. It has been proposed for use in high-throughput screening (HTS), where it is also known as Z-prime, [ 1 ] to judge whether the response in a particular assay is large enough to warrant further attention.

  9. Exploratory data analysis - Wikipedia

    en.wikipedia.org/wiki/Exploratory_data_analysis

    Tukey defined data analysis in 1961 as: "Procedures for analyzing data, techniques for interpreting the results of such procedures, ways of planning the gathering of data to make its analysis easier, more precise or more accurate, and all the machinery and results of (mathematical) statistics which apply to analyzing data."