Search results
Results from the WOW.Com Content Network
Siegel derived it from the Riemann–Siegel integral formula, an expression for the zeta function involving contour integrals. It is often used to compute values of the Riemann–Siegel formula, sometimes in combination with the Odlyzko–Schönhage algorithm which speeds it up considerably.
The functional equation in question for the Riemann zeta function takes the simple form = where Z(s) is ζ(s) multiplied by a gamma-factor, involving the gamma function. This is now read as an 'extra' factor in the Euler product for the zeta-function, corresponding to the infinite prime.
Several progressively more accurate approximations of the step function. An asymmetrical Gaussian function fit to a noisy curve using regression.. In general, a function approximation problem asks us to select a function among a well-defined class [citation needed] [clarification needed] that closely matches ("approximates") a target function [citation needed] in a task-specific way.
The objective is to make the approximation as close as possible to the actual function, typically with an accuracy close to that of the underlying computer's floating point arithmetic. This is accomplished by using a polynomial of high degree, and/or narrowing the domain over which the polynomial has to approximate the function. Narrowing the ...
In cases where (), are expressed by polynomials or series of negative powers, exponential function, logarithmic function or , we can apply 2-point Padé approximant to (). There is a method of using this to give an approximate solution of a differential equation with high accuracy. [ 9 ]
In mathematics, a linear approximation is an approximation of a general function using a linear function (more precisely, an affine function). They are widely used in the method of finite differences to produce first order methods for solving or approximating solutions to equations.
For example, the gamma function is a function that satisfies the functional equation (+) = and the initial value () = There are many functions that satisfy these conditions, but the gamma function is the unique one that is meromorphic in the whole complex plane, and logarithmically convex for x real and positive ( Bohr–Mollerup theorem ).
The idea is to start with an initial guess, then to approximate the function by its tangent line, and finally to compute the x-intercept of this tangent line.This x-intercept will typically be a better approximation to the original function's root than the first guess, and the method can be iterated.