enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Method of complements - Wikipedia

    en.wikipedia.org/wiki/Method_of_complements

    The nines' complement of a number given in decimal representation is formed by replacing each digit with nine minus that digit. To subtract a decimal number y (the subtrahend) from another number x (the minuend) two methods may be used: In the first method, the nines' complement of x is added to y. Then the nines' complement of the result ...

  3. Signed number representations - Wikipedia

    en.wikipedia.org/wiki/Signed_number_representations

    For instance, a two's-complement addition of 127 and −128 gives the same binary bit pattern as an unsigned addition of 127 and 128, as can be seen from the 8-bit two's complement table. An easier method to get the negation of a number in two's complement is as follows:

  4. Two's complement - Wikipedia

    en.wikipedia.org/wiki/Two's_complement

    Two's complement is the most common method of representing signed (positive, negative, and zero) integers on computers, [1] and more generally, fixed point binary values. Two's complement uses the binary digit with the greatest value as the sign to indicate whether the binary number is positive or negative; when the most significant bit is 1 the number is signed as negative and when the most ...

  5. Sign extension - Wikipedia

    en.wikipedia.org/wiki/Sign_extension

    In the Intel x86 instruction set, for example, there are two ways of doing sign extension: using the instructions cbw , cwd , cwde , and cdq : convert the byte to word, word to doubleword, word to extended doubleword, and doubleword to quadword, respectively (in the x86 context a byte has 8 bits, a word 16 bits, a doubleword and extended ...

  6. Bitwise operation - Wikipedia

    en.wikipedia.org/wiki/Bitwise_operation

    In computer programming, a bitwise operation operates on a bit string, a bit array or a binary numeral (considered as a bit string) at the level of its individual bits.It is a fast and simple action, basic to the higher-level arithmetic operations and directly supported by the processor.

  7. Fletcher's checksum - Wikipedia

    en.wikipedia.org/wiki/Fletcher's_checksum

    When the data word is divided into 16-bit blocks, two 16-bit sums result and are combined into a 32-bit Fletcher checksum. Usually, the second sum will be multiplied by 2 16 and added to the simple checksum, effectively stacking the sums side-by-side in a 32-bit word with the simple checksum at the least significant end.

  8. Checksum - Wikipedia

    en.wikipedia.org/wiki/Checksum

    For cryptographic systems with these two specific design goals [clarification needed], see HMAC. Check digits and parity bits are special cases of checksums, appropriate for small blocks of data (such as Social Security numbers , bank account numbers, computer words , single bytes , etc.).

  9. Bitboard - Wikipedia

    en.wikipedia.org/wiki/Bitboard

    In bitboard representations, each bit of a 64 bit word (or double word on 32-bit architectures) is associated with a square of the chessboard. Any mapping of bits to squares can be used, but by broad convention, bits are associated with squares from left to right and bottom to top, so that bit 0 represents square a1, bit 7 is square h1, bit 56 ...