Search results
Results from the WOW.Com Content Network
The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.
For this case only two components of the shear stress became non-zero: = ˙ and = ˙ where ˙ is the shear rate.. Thus, the upper-convected Maxwell model predicts for the simple shear that shear stress to be proportional to the shear rate and the first difference of normal stresses is proportional to the square of the shear rate, the second difference of normal stresses is always zero.
Schematic diagram of Burgers material, Maxwell representation. Given that one Maxwell material has an elasticity and viscosity , and the other Maxwell material has an elasticity and viscosity , the Burgers model has the constitutive equation
In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.
There are two London equations when expressed in terms of measurable fields: =, =. Here is the (superconducting) current density, E and B are respectively the electric and magnetic fields within the superconductor, is the charge of an electron or proton, is electron mass, and is a phenomenological constant loosely associated with a number density of superconducting carriers.
The equations governing turbulent flows can only be solved directly for simple cases of flow. For most real-life turbulent flows, CFD simulations use turbulent models to predict the evolution of turbulence. These turbulence models are simplified constitutive equations that predict the statistical evolution of turbulent flows. [1]
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2]