enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. The Pile (dataset) - Wikipedia

    en.wikipedia.org/wiki/The_Pile_(dataset)

    The Pile is an 886.03 GB diverse, open-source dataset of English text created as a training dataset for large language models (LLMs). It was constructed by EleutherAI in 2020 and publicly released on December 31 of that year.

  3. Prompt engineering - Wikipedia

    en.wikipedia.org/wiki/Prompt_engineering

    For example, a prompt may include a few examples for a model to learn from, such as asking the model to complete "maison → house, chat → cat, chien →" (the expected response being dog), [23] an approach called few-shot learning. [24] In-context learning is an emergent ability [25] of large language models.

  4. Large language model - Wikipedia

    en.wikipedia.org/wiki/Large_language_model

    Advances in software and hardware have reduced the cost substantially since 2020, such that in 2023 training of a 12-billion-parameter LLM computational cost is 72,300 A100-GPU-hours, while in 2020 the cost of training a 1.5-billion-parameter LLM (which was two orders of magnitude smaller than the state of the art in 2020) was between $80,000 ...

  5. GPT-3 - Wikipedia

    en.wikipedia.org/wiki/GPT-3

    GPT-3 is capable of performing zero-shot and few-shot learning (including one-shot). [1] In June 2022, Almira Osmanovic Thunström wrote that GPT-3 was the primary author on an article on itself, that they had submitted it for publication, [24] and that it had been pre-published while waiting for completion of its review. [25]

  6. GPT-2 - Wikipedia

    en.wikipedia.org/wiki/GPT-2

    GPT-2 was pre-trained on a dataset of 8 million web pages. [2] It was partially released in February 2019, followed by full release of the 1.5-billion-parameter model on November 5, 2019. [3] [4] [5] GPT-2 was created as a "direct scale-up" of GPT-1 [6] with a ten-fold increase in both its parameter count and the size of its training dataset. [5]

  7. Few-shot learning - Wikipedia

    en.wikipedia.org/wiki/Few-shot_learning

    Few-shot learning and one-shot learning may refer to: Few-shot learning, a form of prompt engineering in generative AI; One-shot learning (computer vision)

  8. List of large language models - Wikipedia

    en.wikipedia.org/wiki/List_of_large_language_models

    A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation. LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text.

  9. Neural scaling law - Wikipedia

    en.wikipedia.org/wiki/Neural_scaling_law

    For Hex, 10x training-time compute trades for 15x test-time compute. [7] For Libratus for heads up no-limit Texas hold 'em , and Cicero for Diplomacy , and many other abstract games of partial information, inference-time searching improves performance at a similar tradeoff ratio, for up to 100,000x effective increase in training-time compute.