Search results
Results from the WOW.Com Content Network
Capillary rheometers are especially advantageous for characterization of therapeutic protein solutions since it determines the ability to be syringed. [6] Additionally, there is an inverse relationship between the rheometry and solution stability, as well as thermodynamic interactions. Rotational geometries of different types of shearing rheometers
Capillary breakup rheometry is an experimental technique used to assess the extensional rheological response of low viscous fluids. Unlike most shear and extensional rheometers, this technique does not involve active stretch or measurement of stress or strain but exploits only surface tension to create a uniaxial extensional flow.
Rheometry (from Greek ῥέος (rheos) 'stream') generically refers to the experimental techniques used to determine the rheological properties of materials, [1] that is the qualitative and quantitative relationships between stresses and strains and their derivatives.
Measuring principle: The slit viscometer/rheometer is based on the fundamental principle that a viscous liquid resists flow, exhibiting a decreasing pressure along the length of the slit. The pressure decrease or drop ( ∆ P ) is correlated with the shear stress at the wall boundary.
Rheology (/ r iː ˈ ɒ l ə dʒ i /; from Greek ῥέω (rhéō) 'flow' and -λoγία (-logia) 'study of') is the study of the flow of matter, primarily in a fluid (liquid or gas) state but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an applied force.
Much like the Meissner-type rheometer, the SER rheometer uses a set of two rollers to strain a sample at a given rate. [31] It then calculates the sample viscosity using the well known equation: σ = η ϵ ˙ {\displaystyle \sigma =\eta {\dot {\epsilon }}} where σ {\displaystyle \sigma } is the stress, η {\displaystyle \eta } is the viscosity ...
Babies and other young children, as well as the elderly and people with chronic kidney and heart problems, need to visit the doctor sooner rather than later to make sure they are keeping hydrated.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.