enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Feature engineering - Wikipedia

    en.wikipedia.org/wiki/Feature_engineering

    getML community is an open source tool for automated feature engineering on time series and relational data. [23] [24] It is implemented in C/C++ with a Python interface. [24] It has been shown to be at least 60 times faster than tsflex, tsfresh, tsfel, featuretools or kats. [24] tsfresh is a Python library for feature extraction on time series ...

  3. Feature (computer vision) - Wikipedia

    en.wikipedia.org/wiki/Feature_(computer_vision)

    When feature extraction is done without local decision making, the result is often referred to as a feature image. Consequently, a feature image can be seen as an image in the sense that it is a function of the same spatial (or temporal) variables as the original image, but where the pixel values hold information about image features instead of ...

  4. Feature learning - Wikipedia

    en.wikipedia.org/wiki/Feature_learning

    In machine learning (ML), feature learning or representation learning [2] is a set of techniques that allow a system to automatically discover the representations needed for feature detection or classification from raw data. This replaces manual feature engineering and allows a machine to both learn the features and use them to perform a ...

  5. Feature (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Feature_(machine_learning)

    In feature engineering, two types of features are commonly used: numerical and categorical. Numerical features are continuous values that can be measured on a scale. Examples of numerical features include age, height, weight, and income. Numerical features can be used in machine learning algorithms directly. [citation needed]

  6. Feature selection - Wikipedia

    en.wikipedia.org/wiki/Feature_selection

    In machine learning, feature selection is the process of selecting a subset of relevant features (variables, predictors) for use in model construction. Feature selection techniques are used for several reasons: simplification of models to make them easier to interpret, [1] shorter training times, [2] to avoid the curse of dimensionality, [3]

  7. Pattern recognition - Wikipedia

    en.wikipedia.org/wiki/Pattern_recognition

    Techniques to transform the raw feature vectors (feature extraction) are sometimes used prior to application of the pattern-matching algorithm. Feature extraction algorithms attempt to reduce a large-dimensionality feature vector into a smaller-dimensionality vector that is easier to work with and encodes less redundancy, using mathematical ...

  8. Multimedia information retrieval - Wikipedia

    en.wikipedia.org/wiki/Multimedia_Information...

    Multimedia information retrieval (MMIR or MIR) is a research discipline of computer science that aims at extracting semantic information from multimedia data sources. [1] [failed verification] Data sources include directly perceivable media such as audio, image and video, indirectly perceivable sources such as text, semantic descriptions, [2] biosignals as well as not perceivable sources such ...

  9. Kanade–Lucas–Tomasi feature tracker - Wikipedia

    en.wikipedia.org/wiki/Kanade–Lucas–Tomasi...

    In computer vision, the Kanade–Lucas–Tomasi (KLT) feature tracker is an approach to feature extraction. It is proposed mainly for the purpose of dealing with the problem that traditional image registration techniques are generally costly. KLT makes use of spatial intensity information to direct the search for the position that yields the ...