enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Paramagnetism - Wikipedia

    en.wikipedia.org/wiki/Paramagnetism

    The element hydrogen is virtually never called 'paramagnetic' because the monatomic gas is stable only at extremely high temperature; H atoms combine to form molecular H 2 and in so doing, the magnetic moments are lost (quenched), because of the spins pair. Hydrogen is therefore diamagnetic and the same holds true for many other elements ...

  3. Magnetochemistry - Wikipedia

    en.wikipedia.org/wiki/Magnetochemistry

    With one unpaired electron μ eff values range from 1.8 to 2.5 μ B and with two unpaired electrons the range is 3.18 to 3.3 μ B. Note that low-spin complexes of Fe 2+ and Co 3+ are diamagnetic. Another group of complexes that are diamagnetic are square-planar complexes of d 8 ions such as Ni 2+ and Rh + and Au 3+.

  4. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    Molecular orbital diagram of HF. Hydrogen fluoride is another example of a heteronuclear molecule. It is slightly different in that the π orbital is non-bonding, as well as the 2s σ. From the hydrogen, its valence 1s electron interacts with the 2p electrons of fluorine. This molecule is diamagnetic and has a bond order of one.

  5. Unpaired electron - Wikipedia

    en.wikipedia.org/wiki/Unpaired_electron

    In chemistry, an unpaired electron is an electron that occupies an orbital of an atom singly, rather than as part of an electron pair. Each atomic orbital of an atom (specified by the three quantum numbers n, l and m) has a capacity to contain two electrons ( electron pair ) with opposite spins .

  6. Diamagnetism - Wikipedia

    en.wikipedia.org/wiki/Diamagnetism

    Diamagnetism is a quantum mechanical effect that occurs in all materials; when it is the only contribution to the magnetism, the material is called diamagnetic. In paramagnetic and ferromagnetic substances, the weak diamagnetic force is overcome by the attractive force of magnetic dipoles in the material.

  7. Lewis structure - Wikipedia

    en.wikipedia.org/wiki/Lewis_structure

    [1] [2] [3] Introduced by Gilbert N. Lewis in his 1916 article The Atom and the Molecule, a Lewis structure can be drawn for any covalently bonded molecule, as well as coordination compounds. [4] Lewis structures extend the concept of the electron dot diagram by adding lines between atoms to represent shared pairs in a chemical bond.

  8. Molecular orbital theory - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_theory

    Thus, when excited with the requisite amount of energy through high-frequency light or other means, electrons can transition to higher-energy molecular orbitals. For instance, in the simple case of a hydrogen diatomic molecule, promotion of a single electron from a bonding orbital to an antibonding orbital can occur under UV radiation.

  9. Electron configuration - Wikipedia

    en.wikipedia.org/wiki/Electron_configuration

    In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. [1] For example, the electron configuration of the neon atom is 1s 2 2s 2 2p 6 , meaning that the 1s, 2s, and 2p subshells are occupied by two, two, and six ...