Search results
Results from the WOW.Com Content Network
The Smith predictor (invented by O. J. M. Smith in 1957) is a type of predictive controller designed to control systems with a significant feedback time delay. The idea can be illustrated as follows. Suppose the plant consists of () followed by a pure time delay .
The bilinear transform is a first-order approximation of the natural logarithm function that is an exact mapping of the z-plane to the s-plane. When the Laplace transform is performed on a discrete-time signal (with each element of the discrete-time sequence attached to a correspondingly delayed unit impulse), the result is precisely the Z ...
The transfer function of a two-port electronic circuit, such as an amplifier, might be a two-dimensional graph of the scalar voltage at the output as a function of the scalar voltage applied to the input; the transfer function of an electromechanical actuator might be the mechanical displacement of the movable arm as a function of electric ...
The bilinear transform is a first-order Padé approximant of the natural logarithm function that is an exact mapping of the z-plane to the s-plane.When the Laplace transform is performed on a discrete-time signal (with each element of the discrete-time sequence attached to a correspondingly delayed unit impulse), the result is precisely the Z transform of the discrete-time sequence with the ...
The closed-loop transfer function is measured at the output. The output signal can be calculated from the closed-loop transfer function and the input signal. Signals may be waveforms, images, or other types of data streams. An example of a closed-loop block diagram, from which a transfer function may be computed, is shown below:
In control system theory, and various branches of engineering, a transfer function matrix, or just transfer matrix is a generalisation of the transfer functions of single-input single-output (SISO) systems to multiple-input and multiple-output (MIMO) systems. [1] The matrix relates the outputs of the system to its inputs.
Each unit delay is a z −1 operator in Z-transform notation. A lattice-form discrete-time FIR filter of order N. Each unit delay is a z −1 operator in Z-transform notation. For a causal discrete-time FIR filter of order N, each value of the output sequence is a weighted sum of the most recent input values:
h() is a transfer function of an impulse response to the input. The convolution allows the filter to only be activated when the input recorded a signal at the same time value. This filter returns the input values (x(t)) if k falls into the support region of function h.