Search results
Results from the WOW.Com Content Network
The foot-pound force (symbol: ft⋅lbf, [1] ft⋅lb f, [2] or ft⋅lb [3]) is a unit of work or energy in the engineering and gravitational systems in United States customary and imperial units of measure. It is the energy transferred upon applying a force of one pound-force (lbf) through a linear displacement of one foot.
In July 1959, the various national foot and avoirdupois pound standards were replaced by the international foot of precisely 0.3048 m and the international pound of precisely 0.453 592 37 kg, making conversion between the systems a matter of simple arithmetic.
In unit systems where force is a derived unit, like in SI units, g c is equal to 1. In unit systems where force is a primary unit, like in imperial and US customary measurement systems , g c may or may not equal 1 depending on the units used, and value other than 1 may be required to obtain correct results. [ 2 ]
The pound-force is the product of one avoirdupois pound (exactly 0.45359237 kg) and the standard acceleration due to gravity, approximately 32.174049 ft/s 2 (9.80665 m/s 2). [ 5 ] [ 6 ] [ 7 ] The standard values of acceleration of the standard gravitational field ( g n ) and the international avoirdupois pound (lb) result in a pound-force equal ...
A pound-foot (lb⋅ft), abbreviated from pound-force foot (lbf · ft), is a unit of torque representing one pound of force acting at a perpendicular distance of one foot from a pivot point. [2] Conversely one foot pound-force (ft · lbf) is the moment about an axis that applies one pound-force at a radius of one foot.
Since a pound of force (pound force) accelerates a pound of mass at 32.174 049 ft/s 2 (9.80665 m/s 2; the acceleration of gravity, g), we can scale down the unit of force to compensate, giving us one that accelerates 1 pound mass at 1 ft/s 2 rather than at 32.174 049 ft/s 2; and that is the poundal, which is approximately 1 ⁄ 32 pound force.
One slug is a mass equal to 32.17405 lb (14.59390 kg) based on standard gravity, the international foot, and the avoirdupois pound. [3] In other words, at the Earth's surface (in standard gravity), an object with a mass of 1 slug weighs approximately 32.17405 lbf or 143.1173 N. [ 4 ] [ 5 ]
This means that we apply the transformation H*C = G, and the non-SI effect of the definition of permeability is included in the conversion factor C for permeability. The transformation H*C = G apply for every spatial dimension so we concentrate on the main terms, neglecting the signs, and then complete the parenthesis with the gravity term.