enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Resolution of singularities - Wikipedia

    en.wikipedia.org/wiki/Resolution_of_singularities

    An example where it does not is given by the isolated singularity of x 2 + y 3 z + z 3 = 0 at the origin. Blowing it up gives the singularity x 2 + y 2 z + yz 3 = 0. It is not immediately obvious that this new singularity is better, as both singularities have multiplicity 2 and are given by the sum of monomials of degrees 2, 3, and 4.

  3. Parity of zero - Wikipedia

    en.wikipedia.org/wiki/Parity_of_zero

    As a result, zero shares all the properties that characterize even numbers: for example, 0 is neighbored on both sides by odd numbers, any decimal integer has the same parity as its last digit—so, since 10 is even, 0 will be even, and if y is even then y + x has the same parity as x —indeed, 0 + x and x always have the same parity. Zero ...

  4. Division by zero - Wikipedia

    en.wikipedia.org/wiki/Division_by_zero

    A positive or negative number when divided by zero is a fraction with the zero as denominator. Zero divided by a negative or positive number is either zero or is expressed as a fraction with zero as numerator and the finite quantity as denominator. Zero divided by zero is zero. In 830, Mahāvīra unsuccessfully tried to correct the mistake ...

  5. Multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_inverse

    For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the function f(x) that maps x to 1/x, is one of the simplest examples of a function which is its own inverse (an involution).

  6. Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Riemann_hypothesis

    The other terms also correspond to zeros: the dominant term li(x) comes from the pole at s = 1, considered as a zero of multiplicity −1, and the remaining small terms come from the trivial zeros. For some graphs of the sums of the first few terms of this series see Riesel & Göhl (1970) or Zagier (1977) .

  7. Length of a module - Wikipedia

    en.wikipedia.org/wiki/Length_of_a_module

    Given an algebraic variety and a subvariety of codimension 1 [3] the order of vanishing for a polynomial () is defined as [4] ⁡ =, (, ()) where , is the local ring defined by the stalk of along the subvariety [3] pages 426-227, or, equivalently, the stalk of at the generic point of [5] page 22.

  8. Bézout's theorem - Wikipedia

    en.wikipedia.org/wiki/Bézout's_theorem

    This proves Bézout's theorem, if the multiplicity of a common zero is defined as the multiplicity of the corresponding linear factor of the U-resultant. As for the preceding proof, the equality of this multiplicity with the definition by deformation results from the continuity of the U -resultant as a function of the coefficients of the f i ...

  9. Strongly regular graph - Wikipedia

    en.wikipedia.org/wiki/Strongly_regular_graph

    Following the terminology in much of the strongly regular graph literature, the larger eigenvalue is called r with multiplicity f and the smaller one is called s with multiplicity g. Since the sum of all the eigenvalues is the trace of the adjacency matrix, which is zero in this case, the respective multiplicities f and g can be calculated: