Search results
Results from the WOW.Com Content Network
As the study of argument is of clear importance to the reasons that we hold things to be true, logic is of essential importance to rationality. Arguments may be logical if they are "conducted or assessed according to strict principles of validity", [1] while they are rational according to the broader requirement that they are based on reason and knowledge.
Given a structure or interpretation, a sentence will have a fixed truth value. A theory is satisfiable when it is possible to present an interpretation in which all of its sentences are true. The study of algorithms to automatically discover interpretations of theories that render all sentences as being true is known as the satisfiability ...
It deals with propositions [1] (which can be true or false) [10] and relations between propositions, [11] including the construction of arguments based on them. [12] Compound propositions are formed by connecting propositions by logical connectives representing the truth functions of conjunction , disjunction , implication , biconditional , and ...
The 1998 book Proofs from THE BOOK, inspired by Erdős, is a collection of particularly succinct and revelatory mathematical arguments. Some examples of particularly elegant results included are Euclid's proof that there are infinitely many prime numbers and the fast Fourier transform for harmonic analysis .
The mathematician Paul Erdős was known for describing proofs which he found to be particularly elegant as coming from "The Book", a hypothetical tome containing the most beautiful method(s) of proving each theorem. The book Proofs from THE BOOK, published in 2003, is devoted to presenting 32 proofs its editors find particularly pleasing.
In logic, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition by showing that assuming the proposition to be false leads to a contradiction. Although it is quite freely used in mathematical proofs, not every school of mathematical thought accepts this kind of nonconstructive proof as universally ...
The corresponding conditional of a valid argument is a logical truth and the negation of its corresponding conditional is a contradiction. The conclusion is a necessary consequence of its premises. An argument that is not valid is said to be "invalid". An example of a valid (and sound) argument is given by the following well-known syllogism:
Forms of logical reasoning can be distinguished based on how the premises support the conclusion. Deductive arguments offer the strongest possible support. Non-deductive arguments are weaker but are nonetheless correct forms of reasoning. [28] [29] The term "proof" is often used for deductive arguments or very strong non-deductive arguments. [30]