enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperparameter (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_(machine...

    In machine learning, a hyperparameter is a parameter that can be set in order to define any configurable part of a model's learning process. Hyperparameters can be classified as either model hyperparameters (such as the topology and size of a neural network) or algorithm hyperparameters (such as the learning rate and the batch size of an optimizer).

  3. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    The values of parameters are derived via learning. Examples of hyperparameters include learning rate, the number of hidden layers and batch size. [citation needed] The values of some hyperparameters can be dependent on those of other hyperparameters. For example, the size of some layers can depend on the overall number of layers. [citation needed]

  4. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    For example, TensorFlow Recommenders and TensorFlow Graphics are libraries for their respective functionalities in recommendation systems and graphics, TensorFlow Federated provides a framework for decentralized data, and TensorFlow Cloud allows users to directly interact with Google Cloud to integrate their local code to Google Cloud. [68]

  5. XLNet - Wikipedia

    en.wikipedia.org/wiki/XLNet

    It was trained on 512 TPU v3 chips, for 5.5 days. At the end of training, it still under-fitted the data, meaning it could have achieved lower loss with more training. It took 0.5 million steps with an Adam optimizer, linear learning rate decay, and a batch size of 8192. [3]

  6. AI accelerator - Wikipedia

    en.wikipedia.org/wiki/AI_accelerator

    An AI accelerator, deep learning processor or neural processing unit (NPU) is a class of specialized hardware accelerator [1] or computer system [2] [3] designed to accelerate artificial intelligence (AI) and machine learning applications, including artificial neural networks and computer vision.

  7. Tensor (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Tensor_(machine_learning)

    In machine learning, the term tensor informally refers to two different concepts (i) a way of organizing data and (ii) a multilinear (tensor) transformation. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector ...

  8. Tensor Processing Unit - Wikipedia

    en.wikipedia.org/wiki/Tensor_Processing_Unit

    Tensor Processing Unit (TPU) is an AI accelerator application-specific integrated circuit (ASIC) developed by Google for neural network machine learning, using Google's own TensorFlow software. [2] Google began using TPUs internally in 2015, and in 2018 made them available for third-party use, both as part of its cloud infrastructure and by ...

  9. Google JAX - Wikipedia

    en.wikipedia.org/wiki/Google_JAX

    JAX is a machine learning framework for transforming numerical functions developed by Google with some contributions from Nvidia. [2] [3] [4] It is described as bringing together a modified version of autograd (automatic obtaining of the gradient function through differentiation of a function) and OpenXLA's XLA (Accelerated Linear Algebra).