enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Principia Mathematica - Wikipedia

    en.wikipedia.org/wiki/Principia_Mathematica

    G. H. Hardy, A Mathematician's Apology (1940) He [Russell] said once, after some contact with the Chinese language, that he was horrified to find that the language of Principia Mathematica was an Indo-European one. John Edensor Littlewood, Littlewood's Miscellany (1986) The Principia Mathematica (often abbreviated PM) is a three-volume work on the foundations of mathematics written by ...

  3. Basel problem - Wikipedia

    en.wikipedia.org/wiki/Basel_problem

    The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2] Since the problem had withstood the attacks of ...

  4. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    Then P(n) is true for all natural numbers n. For example, we can prove by induction that all positive integers of the form 2n − 1 are odd. Let P(n) represent " 2n − 1 is odd": (i) For n = 1, 2n − 1 = 2 (1) − 1 = 1, and 1 is odd, since it leaves a remainder of 1 when divided by 2. Thus P(1) is true.

  5. Mathematical induction - Wikipedia

    en.wikipedia.org/wiki/Mathematical_induction

    Description. The simplest and most common form of mathematical induction infers that a statement involving a natural number n (that is, an integer n ≥ 0 or 1) holds for all values of n. The proof consists of two steps: The base case (or initial case): prove that the statement holds for 0, or 1. The induction step (or inductive step, or step ...

  6. Fermat number - Wikipedia

    en.wikipedia.org/wiki/Fermat_number

    If 2 k + 1 is prime and k > 0, then k itself must be a power of 2, [1] so 2 k + 1 is a Fermat number; such primes are called Fermat primes. ... Sketch of proof.

  7. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    In mathematics, Euler's identity[note 1] (also known as Euler's equation) is the equality where. is pi, the ratio of the circumference of a circle to its diameter. Euler's identity is named after the Swiss mathematician Leonhard Euler. It is a special case of Euler's formula when evaluated for .

  8. Transcendental number - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number

    In other words, the n th digit of this number is 1 only if n is one of the numbers 1! = 1, 2! = 2, 3! = 6, 4! = 24, etc. Liouville showed that this number belongs to a class of transcendental numbers that can be more closely approximated by rational numbers than can any irrational algebraic number, and this class of numbers is called the ...

  9. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    Identity 1: The following two results follow from this and the ratio identities. To obtain the first, divide both sides of by ; for the second, divide by . Similarly. Identity 2: The following accounts for all three reciprocal functions. Proof 2: Refer to the triangle diagram above. Note that by Pythagorean theorem.