enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    [16] [17] Support vector machine weights have also been used to interpret SVM models in the past. [18] Posthoc interpretation of support vector machine models in order to identify features used by the model to make predictions is a relatively new area of research with special significance in the biological sciences.

  3. Least-squares support vector machine - Wikipedia

    en.wikipedia.org/wiki/Least-squares_support...

    Least-squares support vector machine. Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.

  4. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. [1] The general task of pattern analysis is to find and study general types of relations (for example clusters, rankings ...

  5. Structured support vector machine - Wikipedia

    en.wikipedia.org/wiki/Structured_support_vector...

    The structured support-vector machine is a machine learning algorithm that generalizes the Support-Vector Machine (SVM) classifier. Whereas the SVM classifier supports binary classification, multiclass classification and regression, the structured SVM allows training of a classifier for general structured output labels.

  6. Sequential minimal optimization - Wikipedia

    en.wikipedia.org/wiki/Sequential_minimal...

    O (n ³) Sequential minimal optimization (SMO) is an algorithm for solving the quadratic programming (QP) problem that arises during the training of support-vector machines (SVM). It was invented by John Platt in 1998 at Microsoft Research. [1] SMO is widely used for training support vector machines and is implemented by the popular LIBSVM tool ...

  7. Ranking SVM - Wikipedia

    en.wikipedia.org/wiki/Ranking_SVM

    In machine learning, a ranking SVM is a variant of the support vector machine algorithm, which is used to solve certain ranking problems (via learning to rank). The ranking SVM algorithm was published by Thorsten Joachims in 2002. [1] The original purpose of the algorithm was to improve the performance of an internet search engine.

  8. Hinge loss - Wikipedia

    en.wikipedia.org/wiki/Hinge_loss

    In machine learning, the hinge loss is a loss function used for training classifiers. The hinge loss is used for "maximum-margin" classification, most notably for support vector machines (SVMs). [1] For an intended output t = ±1 and a classifier score y, the hinge loss of the prediction y is defined as. Note that should be the "raw" output of ...

  9. Radial basis function kernel - Wikipedia

    en.wikipedia.org/wiki/Radial_basis_function_kernel

    In machine learning, the radial basis function kernel, or RBF kernel, is a popular kernel function used in various kernelized learning algorithms. In particular, it is commonly used in support vector machine classification. [1] The RBF kernel on two samples and , represented as feature vectors in some input space, is defined as [2] σ ...