enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kelvin - Wikipedia

    en.wikipedia.org/wiki/Kelvin

    The Celsius, Fahrenheit, and Rankine scales were redefined in terms of the Kelvin scale using this definition. [ 2 ] [ 7 ] [ 8 ] The 2019 revision of the SI now defines the kelvin in terms of energy by setting the Boltzmann constant to exactly 1.380 649 × 10 −23 joules per kelvin; [ 2 ] every 1 K change of thermodynamic temperature ...

  3. Thermodynamic temperature - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_temperature

    Thermodynamic temperature is a quantity defined in thermodynamics as distinct from kinetic theory or statistical mechanics.. Historically, thermodynamic temperature was defined by Lord Kelvin in terms of a macroscopic relation between thermodynamic work and heat transfer as defined in thermodynamics, but the kelvin was redefined by international agreement in 2019 in terms of phenomena that are ...

  4. Antoine equation - Wikipedia

    en.wikipedia.org/wiki/Antoine_equation

    Antoine equation. The Antoine equation is a class of semi-empirical correlations describing the relation between vapor pressure and temperature for pure substances. The Antoine equation is derived from the Clausius–Clapeyron relation. The equation was presented in 1888 by the French engineer Louis Charles Antoine [fr] (1825–1897).

  5. Clausius–Clapeyron relation - Wikipedia

    en.wikipedia.org/wiki/Clausius–Clapeyron_relation

    Kelvin and his brother James Thomson confirmed the relation experimentally in 1849–50, and it was historically important as a very early successful application of theoretical thermodynamics. [5] Its relevance to meteorology and climatology is the increase of the water-holding capacity of the atmosphere by about 7% for every 1 °C (1.8 °F ...

  6. Kelvin equation - Wikipedia

    en.wikipedia.org/wiki/Kelvin_equation

    The Kelvin equation describes the change in vapour pressure due to a curved liquid–vapor interface, such as the surface of a droplet. The vapor pressure at a convex curved surface is higher than that at a flat surface. The Kelvin equation is dependent upon thermodynamic principles and does not allude to special properties of materials.

  7. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    For an ideal absorber/emitter or black body, the Stefan–Boltzmann law states that the total energy radiated per unit surface area per unit time (also known as the radiant exitance) is directly proportional to the fourth power of the black body's temperature, T: The constant of proportionality, , is called the Stefan–Boltzmann constant.

  8. Conversion of scales of temperature - Wikipedia

    en.wikipedia.org/wiki/Conversion_of_scales_of...

    Comparison of temperature scales. * Normal human body temperature is 36.8 °C ±0.7 °C, or 98.2 °F ±1.3 °F. The commonly given value 98.6 °F is simply the exact conversion of the nineteenth-century German standard of 37 °C. Since it does not list an acceptable range, it could therefore be said to have excess (invalid) precision.

  9. Dulong–Petit law - Wikipedia

    en.wikipedia.org/wiki/Dulong–Petit_law

    An equivalent statement of the Dulong–Petit law in modern terms is that, regardless of the nature of the substance, the specific heat capacity c of a solid element (measured in joule per kelvin per kilogram) is equal to 3R/M, where R is the gas constant (measured in joule per kelvin per mole) and M is the molar mass (measured in kilogram per mole).